Comptes Rendus
Calculus of variations
Asymptotic formulas for perturbations in Stokes flow due to the presence of small immiscible liquid particles
Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 219-223.

The aim of this work is the design of an efficient method to obtain information about a finite number of small and well-separated liquid particles located in a viscous fluid from boundary measurements. The viscosity and density of particles are different from those of a background fluid governed by a Stokes flow. An asymptotic formula for the velocity perturbation is derived based on the concept of Viscous Moment Tensor analysis. This formula will be the principle for efficient computational algorithms of identification.

On considère l'écoulement d'un fluide visqueux incompressible décrit par les équations de Stokes. On démontre dans cette note des formules de représentations asymptotiques pour les perturbations de vitesse causées par la présence d'un nombre fini de particules liquides de faible volume. On suppose que les particules (la phase dispersée) sont distinctes et que leurs caractéristiques physiques (la viscosité et la densité) sont différentes de celle du fluide de référence (la phase continue). Nous avons introduit la notion des tenseurs visqueux. Ces formules de représentations peuvent être utilisées pour construire des algorithmes numériques très efficaces d'identification (ou d'optimisation d'emplacements) des particules à partir des données au bord sur-déterminées.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.10.023

Mohamed Abdelwahed 1; Nejmeddine Chorfi 1; Maatoug Hassine 2

1 Department of Mathematics, College of Sciences, King Saud University, Saudi Arabia
2 Département de Mathématiques, Faculté des sciences de Monastir, Tunisia
@article{CRMATH_2016__354_2_219_0,
     author = {Mohamed Abdelwahed and Nejmeddine Chorfi and Maatoug Hassine},
     title = {Asymptotic formulas for perturbations in {Stokes} flow due to the presence of small immiscible liquid particles},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {219--223},
     publisher = {Elsevier},
     volume = {354},
     number = {2},
     year = {2016},
     doi = {10.1016/j.crma.2015.10.023},
     language = {en},
}
TY  - JOUR
AU  - Mohamed Abdelwahed
AU  - Nejmeddine Chorfi
AU  - Maatoug Hassine
TI  - Asymptotic formulas for perturbations in Stokes flow due to the presence of small immiscible liquid particles
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 219
EP  - 223
VL  - 354
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2015.10.023
LA  - en
ID  - CRMATH_2016__354_2_219_0
ER  - 
%0 Journal Article
%A Mohamed Abdelwahed
%A Nejmeddine Chorfi
%A Maatoug Hassine
%T Asymptotic formulas for perturbations in Stokes flow due to the presence of small immiscible liquid particles
%J Comptes Rendus. Mathématique
%D 2016
%P 219-223
%V 354
%N 2
%I Elsevier
%R 10.1016/j.crma.2015.10.023
%G en
%F CRMATH_2016__354_2_219_0
Mohamed Abdelwahed; Nejmeddine Chorfi; Maatoug Hassine. Asymptotic formulas for perturbations in Stokes flow due to the presence of small immiscible liquid particles. Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 219-223. doi : 10.1016/j.crma.2015.10.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.023/

[1] C. Alves; H. Ammari Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium, SIAM J. Appl. Math., Volume 62 (2001), pp. 94-106

[2] H. Ammari; H. Kang; G. Nakamura; K. Tanuma Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion, J. Elast., Volume 67 (2002), pp. 97-129

[3] H. Ammari; H. Kang Boundary layer techniques for solving the Helmhholtz equation in the presence of small inhomogeneities, J. Math. Anal. Appl., Volume 296 (2004), pp. 190-208

[4] D.J. Cedio-Fengya; S. Moskow; M. Vogelius Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Probl., Volume 14 (1998), pp. 553-595

[5] S.T. Chung; T.H. Kwon Numerical simulation of fiber orientation in injection moulding of short-fiber-reinforced thermoplastics, Polym. Eng. Sci., Volume 7 (1995) no. 35, pp. 604-618

[6] R. Codina; U. Schaffer; E. Oñate Mould filling simulation using finite elements, Int. J. Numer. Methods Fluid Flow, Volume 4 (1994), pp. 291-310

[7] R. Dautray; J.-L. Lions Analyse mathémathique et calcul numérique pour les sciences et les techniques, collection CEA, Masson, Paris, 1987

[8] A. Friedman; M. Vogelius Identification of small inhomogeneties of extreme conductivity by boundary measurements: a theorem on continuous dependence, Arch. Ration. Mech. Anal., Volume 105 (1989), pp. 299-326

[9] T. Gotz Simulating particles in Stokes flow, J. Comput. Appl. Math., Volume 175 (2005), pp. 415-427

[10] K.M. Shyue A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state, J. Comput. Phys., Volume 156 (1999), pp. 43-88

[11] M. Vogelius; D. Volkov Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities, Math. Model. Numer. Anal., Volume 34 (2000), pp. 723-748

[12] H. Zhou; C. Pozrikidis Adaptive singularity method for Stokes flow past particles, J. Comput. Phys., Volume 117 (1995), pp. 79-89

Cited by Sources:

Comments - Policy