Comptes Rendus
Mathematical analysis/Partial differential equations
Boutet de Monvel operators on singular manifolds
Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 239-243.

We construct a Boutet de Monvel calculus for general pseudodifferential boundary value problems defined on a broad class of non-compact manifolds, the class of so-called Lie manifolds with boundary. It is known that this class of non-compact manifolds can be used to model many classes of singular manifolds.

Nous construisons un calcul du type Boutet de Monvel pour des problèmes aux limites pseudo-différentiels definis sur une large classe de variétés non compactes, celle qu'on dénomme « variétés de Lie à bord ». Il est bien connu que cette classe de veriétés non compactes peut être utilisée pour modéliser de nombreuses classes de variétés singulières.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.11.005
Keywords: Boutet de Monvel's calculus, Groupoids, Lie manifolds

Karsten Bohlen 1

1 Leibniz University, Hannover, Germany
@article{CRMATH_2016__354_3_239_0,
     author = {Karsten Bohlen},
     title = {Boutet de {Monvel} operators on singular manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {239--243},
     publisher = {Elsevier},
     volume = {354},
     number = {3},
     year = {2016},
     doi = {10.1016/j.crma.2015.11.005},
     language = {en},
}
TY  - JOUR
AU  - Karsten Bohlen
TI  - Boutet de Monvel operators on singular manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 239
EP  - 243
VL  - 354
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2015.11.005
LA  - en
ID  - CRMATH_2016__354_3_239_0
ER  - 
%0 Journal Article
%A Karsten Bohlen
%T Boutet de Monvel operators on singular manifolds
%J Comptes Rendus. Mathématique
%D 2016
%P 239-243
%V 354
%N 3
%I Elsevier
%R 10.1016/j.crma.2015.11.005
%G en
%F CRMATH_2016__354_3_239_0
Karsten Bohlen. Boutet de Monvel operators on singular manifolds. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 239-243. doi : 10.1016/j.crma.2015.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.11.005/

[1] B. Ammann; A. Ionescu; V. Nistor Sobolev spaces on Lie manifolds and regularity for polyhedral domains, Doc. Math., Volume 11 (2006), pp. 161-206

[2] B. Ammann; R. Lauter; V. Nistor Pseudodifferential operators on manifolds with a Lie structure at infinity, Ann. Math., Volume 165 (2007), pp. 717-747

[3] B. Ammann; R. Lauter; V. Nistor On the geometry of Riemannian manifolds with a Lie structure at infinity, Int. J. Math. Sci., Volume 2004 (2004) no. 4, pp. 161-193

[4] B. Ammann; R. Lauter; V. Nistor; A. Vasy Complex powers and non-compact manifolds, Commun. Partial Differ. Equ., Volume 29 (2004) no. 5/6, pp. 671-705

[5] K. Bohlen Boutet de Monvel operators on Lie manifolds with boundary | arXiv

[6] L. Boutet de Monvel Boundary problems for pseudo-differential operators, Acta Math., Volume 126 (1971) no. 1–2, pp. 11-51

[7] A. Connes Noncommutative Geometry, Academic Press, 1994

[8] C. Debord; G. Skandalis Adiabatic groupoid, crossed product by R+ and pseudodifferential calculus, Adv. Math., Volume 257 (2014), pp. 66-91

[9] G. Grubb Functional Calculus of Pseudodifferential Boundary Problems, Birkhäuser, 1986

[10] L. Hörmander The Analysis of Linear Partial Differential Operators III, Springer-Verlag, Berlin, Heidelberg, 1985

[11] V.A. Kondratiev Boundary value problems for elliptic equations in domains with conical or angular points, Transl. Moscow Math. Soc., Volume 16 (1967), pp. 227-313

[12] R. Lauter; V. Nistor Analysis of geometric operators on open manifolds: a groupoid approach, Prog. Math., Volume 198 (2001), pp. 181-229

[13] M. Macho-Stadler; M. O'Ouchi Correspondence of groupoid C-algebras, J. Oper. Theory, Volume 42 (1999), pp. 103-119

[14] K.C.H. Mackenzie General Theory of Lie Groupoids and Lie Algebroids, Lecture Note Series, London Math. Soc., vol. 213, 2005

[15] V. Nistor; A. Weinstein; P. Xu Pseudodifferential operators on differential groupoids, Pac. J. Math., Volume 189 (1999), pp. 117-152

[16] E. Schrohe, B.-W. Schulze, Boundary Value Problems in Boutet de Monvel's Algebra for Manifolds with Conical Singularities I, Advances in Partial Differential Equations 1, pp. 97–209.

[17] S.R. Simanca Pseudo-Differential Operators, Pitman Research Notes in Mathematics, vol. 236, 1990

Cited by Sources:

Comments - Policy