[Operateurs de Boutet de Monvel pour de variétés singulières]
Nous construisons un calcul du type Boutet de Monvel pour des problèmes aux limites pseudo-différentiels definis sur une large classe de variétés non compactes, celle qu'on dénomme « variétés de Lie à bord ». Il est bien connu que cette classe de veriétés non compactes peut être utilisée pour modéliser de nombreuses classes de variétés singulières.
We construct a Boutet de Monvel calculus for general pseudodifferential boundary value problems defined on a broad class of non-compact manifolds, the class of so-called Lie manifolds with boundary. It is known that this class of non-compact manifolds can be used to model many classes of singular manifolds.
Accepté le :
Publié le :
Karsten Bohlen 1
@article{CRMATH_2016__354_3_239_0, author = {Karsten Bohlen}, title = {Boutet de {Monvel} operators on singular manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {239--243}, publisher = {Elsevier}, volume = {354}, number = {3}, year = {2016}, doi = {10.1016/j.crma.2015.11.005}, language = {en}, }
Karsten Bohlen. Boutet de Monvel operators on singular manifolds. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 239-243. doi : 10.1016/j.crma.2015.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.11.005/
[1] Sobolev spaces on Lie manifolds and regularity for polyhedral domains, Doc. Math., Volume 11 (2006), pp. 161-206
[2] Pseudodifferential operators on manifolds with a Lie structure at infinity, Ann. Math., Volume 165 (2007), pp. 717-747
[3] On the geometry of Riemannian manifolds with a Lie structure at infinity, Int. J. Math. Sci., Volume 2004 (2004) no. 4, pp. 161-193
[4] Complex powers and non-compact manifolds, Commun. Partial Differ. Equ., Volume 29 (2004) no. 5/6, pp. 671-705
[5] Boutet de Monvel operators on Lie manifolds with boundary | arXiv
[6] Boundary problems for pseudo-differential operators, Acta Math., Volume 126 (1971) no. 1–2, pp. 11-51
[7] Noncommutative Geometry, Academic Press, 1994
[8] Adiabatic groupoid, crossed product by
[9] Functional Calculus of Pseudodifferential Boundary Problems, Birkhäuser, 1986
[10] The Analysis of Linear Partial Differential Operators III, Springer-Verlag, Berlin, Heidelberg, 1985
[11] Boundary value problems for elliptic equations in domains with conical or angular points, Transl. Moscow Math. Soc., Volume 16 (1967), pp. 227-313
[12] Analysis of geometric operators on open manifolds: a groupoid approach, Prog. Math., Volume 198 (2001), pp. 181-229
[13] Correspondence of groupoid
[14] General Theory of Lie Groupoids and Lie Algebroids, Lecture Note Series, London Math. Soc., vol. 213, 2005
[15] Pseudodifferential operators on differential groupoids, Pac. J. Math., Volume 189 (1999), pp. 117-152
[16] E. Schrohe, B.-W. Schulze, Boundary Value Problems in Boutet de Monvel's Algebra for Manifolds with Conical Singularities I, Advances in Partial Differential Equations 1, pp. 97–209.
[17] Pseudo-Differential Operators, Pitman Research Notes in Mathematics, vol. 236, 1990
- Uniform Shapiro-Lopatinski Conditions and Boundary Value Problems on Manifolds with Bounded Geometry, Potential Analysis, Volume 53 (2020) no. 2, p. 407 | DOI:10.1007/s11118-019-09774-y
- Lie groupoids, pseudodifferential calculus, and index theory, Advances in Noncommutative Geometry (2019), p. 245 | DOI:10.1007/978-3-030-29597-4_4
- Fourier integral operators on Lie groupoids, Advances in Mathematics, Volume 320 (2017), p. 391 | DOI:10.1016/j.aim.2017.08.027
- Analysis on singular spaces: Lie manifolds and operator algebras, Journal of Geometry and Physics, Volume 105 (2016), p. 75 | DOI:10.1016/j.geomphys.2016.03.014
Cité par 4 documents. Sources : Crossref
Commentaires - Politique