A function f analytic in , normalized by , is said to be circularly symmetric if the intersection of the set and a circle has one of three forms: the empty set, the whole circle, an arc of the circle which is symmetric with respect to the real axis and contains ϱ. By X we denote the class of all circularly symmetric functions, and by Y the subclass of X consisting of univalent functions.
The main concern of the paper is to determine two Koebe sets: for the class of circularly symmetric functions that are convex in the direction of the imaginary axis and for the class of circularly symmetric and starlike functions, i.e. sets of the form and . In the last section of the paper, we consider a similar problem for the class .
Une fonction f analytique dans , normalisée par , est dite circulairement symétrique si l'intersection de l'ensemble et d'un cercle est, soit l'ensemble vide, soit le cercle complet, soit un arc de cercle symétrique par rapport à l'axe réel et contenant ρ. Nous notons X la classe des fonctions circulairement symétriques et Y la sous-classe de X des fonctions univalentes.
L'objet de cette Note est de déterminer les ensembles de Koebe pour la classe des fonctions circulairement symétriques qui sont convexes dans la direction de l'axe imaginaire et pour la classe des fonctions circulairement symétriques qui sont étoilées, c'est-à-dire de déterminer les ensembles et . Dans la dernière section, nous considérons ce problème pour la sous-classe .
Accepted:
Published online:
Paweł Zaprawa 1
@article{CRMATH_2016__354_3_245_0, author = {Pawe{\l} Zaprawa}, title = {Koebe sets for certain classes of circularly symmetric functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {245--252}, publisher = {Elsevier}, volume = {354}, number = {3}, year = {2016}, doi = {10.1016/j.crma.2015.12.016}, language = {en}, }
Paweł Zaprawa. Koebe sets for certain classes of circularly symmetric functions. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 245-252. doi : 10.1016/j.crma.2015.12.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.016/
[1] On circularly symmetric functions, Appl. Math. Lett., Volume 23 (2010) no. 12, pp. 1483-1488
[2] On the coefficients of Bazilevič functions and circularly symmetric functions, Appl. Math. Lett., Volume 24 (2011) no. 12, pp. 991-995
[3] On circularly symmetric functions, Proc. Amer. Math. Soc., Volume 6 (1955), pp. 620-624
[4] Koebe domains for certain classes of analytic functions, J. Anal. Math., Volume 18 (1967), pp. 185-195
[5] On circularly symmetric functions, J. Aust. Math. Soc., Volume 11 (1970), pp. 251-256
[6] On three classes of univalent functions with real coefficients, J. Lond. Math. Soc., Volume 39 (1964), pp. 43-50
[7] Extreme points of convex sets, IV, bounded typically real functions, Bull. Acad. Pol. Sci., Sér. Sci. Math., Volume 30 (1982), pp. 49-57
Cited by Sources:
Comments - Policy