A classical theorem of I.J. Schoenberg characterizes functions that preserve positivity when applied entrywise to positive semidefinite matrices of arbitrary size. Obtaining similar characterizations in fixed dimension is intricate. In this note, we provide a solution to this problem in the polynomial case. As consequences, we derive tight linear matrix inequalities for Hadamard powers of positive semidefinite matrices, and a sharp asymptotic bound for the matrix cube problem involving Hadamard powers.
Un résultat classique de I.J. Schoenberg caractérise les fonctions préservant la positivité lorsqu'elles sont appliquées aux entrées des matrices semi-définies positives de dimension arbitraire. Le problème analogue lorsque la dimension est fixe est beaucoup plus complexe à résoudre. Dans cette note, nous résolvons ce problème dans le cas où la fonction est un polynôme. Nous dérivons de ce résultat des inégalités exactes pour les puissances d'Hadamard d'une matrice positive et pour le problème du cube matriciel.
Accepted:
Published online:
Alexander Belton 1; Dominique Guillot 2; Apoorva Khare 3; Mihai Putinar 4, 5
@article{CRMATH_2016__354_2_143_0, author = {Alexander Belton and Dominique Guillot and Apoorva Khare and Mihai Putinar}, title = {Matrix positivity preservers in fixed dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {143--148}, publisher = {Elsevier}, volume = {354}, number = {2}, year = {2016}, doi = {10.1016/j.crma.2015.11.006}, language = {en}, }
TY - JOUR AU - Alexander Belton AU - Dominique Guillot AU - Apoorva Khare AU - Mihai Putinar TI - Matrix positivity preservers in fixed dimension JO - Comptes Rendus. Mathématique PY - 2016 SP - 143 EP - 148 VL - 354 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2015.11.006 LA - en ID - CRMATH_2016__354_2_143_0 ER -
Alexander Belton; Dominique Guillot; Apoorva Khare; Mihai Putinar. Matrix positivity preservers in fixed dimension. Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 143-148. doi : 10.1016/j.crma.2015.11.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.11.006/
[1] Matrix positivity preservers in fixed dimension. I (submitted for publication) | arXiv
[2] Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions, Grad. Texts Math., vol. 100, Springer-Verlag, New York, 1984
[3] Sur les fonctions absolument monotones, Acta Math., Volume 52 (1929) no. 1, pp. 1-66
[4] Philadelphia, PA, USA, MOS-SIAM Ser. Optim., vol. 13 (2013)
[5] Hilbert distances and positive definite functions, Ann. of Math., Volume 42 (1941), pp. 647-656
[6] Positive zonal functions on spheres, Proc. Natl. Acad. Sci. USA, Volume 40 (1954), pp. 1141-1147
[7] The Lee–Yang and Pólya–Schur programs. I. Linear operators preserving stability, Invent. Math., Volume 177 (2009) no. 3, pp. 541-569
[8] The Lee–Yang and Pólya–Schur programs. II. Theory of stable polynomials and applications, Commun. Pure Appl. Math., Volume 62 (2009) no. 12, pp. 1595-1631
[9] Functions operating on positive definite matrices and a theorem of Schoenberg, Trans. Amer. Math. Soc., Volume 243 (1978), pp. 89-95
[10] On fractional Hadamard powers of positive definite matrices, J. Math. Anal. Appl., Volume 61 (1977), pp. 633-642
[11] Complete characterization of Hadamard powers preserving Loewner positivity, monotonicity, and convexity, J. Math. Anal. Appl., Volume 425 (2015) no. 1, pp. 489-507
[12] Preserving positivity for rank-constrained matrices, Trans. Amer. Math. Soc. (2016) (arXiv:1406.0042), in press | DOI
[13] Preserving positivity for matrices with sparsity constraints, Trans. Amer. Math. Soc. (2016) (published online) | DOI
[14] Retaining positive definiteness in thresholded matrices, Linear Algebra Appl., Volume 436 (2012) no. 11, pp. 4143-4160
[15] Functions preserving positive definiteness for sparse matrices, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 627-649
[16] Fonctions opérant sur les fonctions définies-positives, Ann. Inst. Fourier (Grenoble), Volume 13 (1963), pp. 161-180
[17] Monotonicity for entrywise functions of matrices, Linear Algebra Appl., Volume 431 (2009) no. 8, pp. 1125-1146
[18] The theory of infinitely divisible matrices and kernels, Trans. Amer. Math. Soc., Volume 136 (1969), pp. 269-286
[19] Caractérisation des fonctions qui opèrent sur les coefficients de Fourier–Stieltjes, C. R. Acad. Sci. Paris, Volume 247 (1958), pp. 773-775
[20] Advances in convex optimization: conic programming, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 413-444
[21] Positive definite sequences and absolutely monotonic functions, Duke Math. J., Volume 26 (1959), pp. 617-622
[22] Positive definite functions on spheres, Duke Math. J., Volume 9 (1942), pp. 96-108
[23] Fourier integrals and metric geometry, Trans. Amer. Math. Soc., Volume 50 (1941), pp. 226-251
Cited by Sources:
Comments - Politique