Let be an element of the quaternionic unitary group , let K be a compact subset of , and let V be a -dimensional quaternionic subspace of . The -dimensional shadow of the image under F of K is its orthogonal projection onto V. We show that there exists a -dimensional quaternionic subspace W of such that the volume of the shadow is the same as the volume of the section . This is a quaternionic analogue of the symplectic linear non-squeezing result recently obtained by Abbondandolo and Matveyev.
Soit un élément du groupe unitaire quaternionnien , soit K un ensemble compact dans , et soit V un sous-espace vectoriel quaternionnien de dimension dans . L'ombre -dimensionnelle de l'image par F de K est sa projection orthogonale sur V. Nous montrons qu'il existe un sous-espace vectoriel quaternionnien de dimension tel que le volume de l'ombre est égal au volume de la section . Ceci est un analogue quaternionnien du résultat de non-squeezing lineaire symplectique obtenu récemment par Abbondandolo et Matveyev.
Accepted:
Published online:
Amedeo Altavilla 1; Lorenzo Nicolodi 2
@article{CRMATH_2016__354_3_307_0, author = {Amedeo Altavilla and Lorenzo Nicolodi}, title = {On the volume of the {Sp(\protect\emph{n})\ensuremath{\cdot}Sp(1)} shadow of a compact set}, journal = {Comptes Rendus. Math\'ematique}, pages = {307--311}, publisher = {Elsevier}, volume = {354}, number = {3}, year = {2016}, doi = {10.1016/j.crma.2015.12.007}, language = {en}, }
Amedeo Altavilla; Lorenzo Nicolodi. On the volume of the Sp(n)⋅Sp(1) shadow of a compact set. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 307-311. doi : 10.1016/j.crma.2015.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.007/
[1] How large is the shadow of a symplectic ball?, J. Topol. Anal., Volume 5 (2013), pp. 87-119
[2] Quaternionic structures on a manifold and subordinated structures, Ann. Mat. Pura Appl. (4), Volume 171 (1996), pp. 205-273
[3] Du côté de chez Pu, Ann. Sci. Éc. Norm. Supér. (4), Volume 5 (1972), pp. 1-44
[4] Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 10, Springer-Verlag, Berlin, 1987
[5] Forme di Hilbert e proprietà estremali in una varietà a struttura quaternionale generalizzata, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. (8), Volume 65 (1978), pp. 63-68
[6] Submanifolds in hyper-Kähler geometry, J. Amer. Math. Soc., Volume 2 (1989), pp. 1-31
[7] Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153, Springer-Verlag, New York, 1969
[8] Pseudoholomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985), pp. 307-347
[9] Spinors and Calibrations, Perspectives in Mathematics, vol. 9, Academic Press, Inc., Boston, MA, 1990
[10] Calibrated geometries, Acta Math., Volume 148 (1982), pp. 47-157
[11] Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem), Math. Ann., Volume 67 (1909), pp. 281-300
[12] Topology of quaternionic manifolds, Trans. Amer. Math. Soc., Volume 122 (1966), pp. 357-367
[13] Riemannian Geometry and Holonomy Groups, Pitman Research Notes in Mathematics Series, vol. 201, Longman Scientific & Technical, Harlow, 1989
[14] Certain minimal or homologically volume minimizing submanifolds in compact symmetric spaces, Tsukuba J. Math., Volume 9 (1985), pp. 117-131
Cited by Sources:
☆ Authors partially supported by FIRB 2012 “Geometria differenziale e teoria geometrica delle funzioni” (A.A.); PRIN 2010–2011 “Varietà reali e complesse: geometria, topologia e analisi armonica” (L.N.); and by the GNSAGA of INdAM.
Comments - Policy