[Sur le fibrés de contact généralisés]
Dans cette Note, nous proposons une approche des structures de contact généralisées reposant sur les fibrés vectoriels de rang 1. Cette nouvelle approche possède trois principaux avantages : (1) elle inclut toutes les autres approches connues à ce jour ; (2) elle éclaircit la signification géométrique de la condition d'intégrabilité des structures de contact généralisées ; (3) au vu de résultats récents obtenus sur les formes multiplicatives et les opérateurs de Spencer [8], elle permet une interprétation simple des équations définissant une structure généralisée de contact en termes d'algébroïdes et de groupoïdes de Lie.
In this Note, we propose a line bundle approach to odd-dimensional analogues of generalized complex structures. This new approach has three main advantages: (1) it encompasses all existing ones; (2) it elucidates the geometric meaning of the integrability condition for generalized contact structures; (3) in light of new results on multiplicative forms and Spencer operators [8], it allows a simple interpretation of the defining equations of a generalized contact structure in terms of Lie algebroids and Lie groupoids.
Accepté le :
Publié le :
Luca Vitagliano 1 ; Aïssa Wade 2
@article{CRMATH_2016__354_3_313_0, author = {Luca Vitagliano and A{\"\i}ssa Wade}, title = {Generalized contact bundles}, journal = {Comptes Rendus. Math\'ematique}, pages = {313--317}, publisher = {Elsevier}, volume = {354}, number = {3}, year = {2016}, doi = {10.1016/j.crma.2015.12.009}, language = {en}, }
Luca Vitagliano; Aïssa Wade. Generalized contact bundles. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 313-317. doi : 10.1016/j.crma.2015.12.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.009/
[1] Generalized contact geometry and T-duality, J. Geom. Phys., Volume 92 (2015), pp. 78-93 | arXiv
[2] Cohomology of skew-holomorphic Lie algebroids, Theor. Math. Phys., Volume 165 (2010), pp. 1598-1609 | arXiv
[3] Multiplicative forms at the infinitesimal level, Math. Ann., Volume 353 (2012), pp. 663-705 | arXiv
[4] Jacobi quasi-Nijenhuis algebroids and Courant–Jacobi algebroid morphisms, J. Geom. Phys., Volume 60 (2010), pp. 951-961 | arXiv
[5] Omni-Lie algebroids, J. Geom. Phys., Volume 60 (2010), pp. 799-808 | arXiv
[6] Generalized complex structures and Lie brackets, Bull. Braz. Math. Soc., Volume 42 (2011), pp. 559-578 | arXiv
[7] Jacobi structures and Spencer operators, J. Math. Pures Appl., Volume 103 (2015), pp. 504-521 | arXiv
[8] Multiplicative forms and Spencer operators, Math. Z., Volume 279 (2015), pp. 939-979 | arXiv
[9] Graded contact manifolds and contact Courant algebroids, J. Geom. Phys., Volume 68 (2013), pp. 27-58 | arXiv
[10] Generalized complex geometry, Ann. Math., Volume 174 (2011), pp. 75-123 | arXiv
[11] Generalized Calabi–Yau manifolds, Quart. J. Math., Volume 54 (2003), pp. 281-308 | arXiv
[12] Contact manifolds and generalized complex structures, J. Geom. Phys., Volume 53 (2005), pp. 249-258 | arXiv
[13] Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sci. Paris, Ser. I, Volume 317 (1993), pp. 81-86
[14] Differential operators and actions of Lie algebroids, Manchester, 2001 (Contemp. Math.), Volume vol. 315, Amer. Math. Soc., Providence, RI, USA (2002), pp. 213-233 | arXiv
[15] Deformations of coisotropic submanifolds in abstract Jacobi manifolds | arXiv
[16] On Jacobi manifolds and Jacobi bundles, Berkeley, CA, 1989 (Math. Sci. Res. Inst. Publ.), Volume vol. 20, Springer, New York (1991), pp. 227-246
[17] Generalized contact structures, J. Lond. Math. Soc., Volume 83 (2011) no. 2, pp. 333-352 | arXiv
[18] Generalized almost contact structures and generalized Sasakian structures, Osaka J. Math., Volume 52 (2015), pp. 43-59 | arXiv
[19] Jacobi quasi-Nijenhuis algebroids, Rep. Math. Phys., Volume 65 (2010), pp. 271-287 | arXiv
[20] Poisson quasi-Nijenhuis manifolds, Commun. Contemp. Math., Volume 270 (2007), pp. 709-725 | arXiv
[21] Generalized CRF-structures, Geom. Dedic., Volume 133 (2008), pp. 129-154 | arXiv
[22] Dirac–Jacobi bundles | arXiv
Cité par Sources :
Commentaires - Politique