[Structure de G-algèbre à homotopie près sur le complexe des co-chaînes des algèbres de type hom]
Une algèbre hom-associative est une algèbre dont l'associativité est tordue par un homomorphisme d'algèbre. Nous montrons que le complexe des co-chaînes de type Hochschild d'une algèbre hom-associative porte une structure de G-algèbre à homotopie près. Comme conséquence, nous obtenons une structure d'algèbre de Gerstenhaber sur la cohomologie des algèbres hom-associatives. Nous arrivons également à des résultats similaires pour les hom-dialgèbres.
A hom-associative algebra is an algebra whose associativity is twisted by an algebra homomorphism. We show that the Hochschild type cochain complex of a hom-associative algebra carries a homotopy G-algebra structure. As a consequence, we get a Gerstenhaber algebra structure on the cohomology of a hom-associative algebra. We also find similar results for hom-dialgebras.
Accepté le :
Publié le :
Apurba Das 1
@article{CRMATH_2018__356_11-12_1090_0, author = {Apurba Das}, title = {Homotopy {\protect\emph{G}-algebra} structure on the cochain complex of hom-type algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {1090--1099}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.11.001}, language = {en}, }
Apurba Das. Homotopy G-algebra structure on the cochain complex of hom-type algebras. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1090-1099. doi : 10.1016/j.crma.2018.11.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.11.001/
[1] Cohomology and deformations of hom-algebras, J. Lie Theory, Volume 21 (2011) no. 4, pp. 813-836
[2] Gerstenhaber algebra structure on the cohomology of a hom-associative algebra | arXiv
[3] Dialgebra (co)homology with coefficients, Dialgebras and Related Operads, Lecture Notes in Math., vol. 1763, Springer, Berlin, 2001, pp. 67-103
[4] The cohomology structure of an associative ring, Ann. of Math. (2), Volume 78 (1963), pp. 267-288
[5] Homotopy G-algebras and moduli space operad, Int. Math. Res. Not., Volume 1995 (1995) no. 3, pp. 141-153
[6] Operads, homotopy algebra and iterated integrals for double loop spaces (preprint) | arXiv
[7] Deformations of Lie algebras using σ-derivations, J. Algebra, Volume 295 (2006), pp. 314-361
[8] Dialgebras, Dialgebras and Related Operads, Lecture Notes in Math., vol. 1763, Springer, Berlin, 2001, pp. 7-66
[9] Dialgebra cohomology as a G-algebra, Trans. Amer. Math. Soc., Volume 356 (2004) no. 6, pp. 2443-2457
[10] Hom-algebra structures, J. Gen. Lie Theory Appl., Volume 2 (2008) no. 2, pp. 51-64
[11] Notes on 1-parameter formal deformations of hom-associative and hom-Lie algebras, Forum Math., Volume 22 (2010) no. 4, pp. 715-739
[12] Gerstenhaber structure and Deligne's conjecture for Loday algebras, J. Pure Appl. Algebra, Volume 209 (2007) no. 3, pp. 739-752
[13] Enveloping algebras of hom-Lie algebras, J. Gen. Lie Theory Appl., Volume 2 (2008) no. 2, pp. 95-108
Cité par Sources :
Commentaires - Politique