Comptes Rendus
Algebra/Homological algebra
Homotopy G-algebra structure on the cochain complex of hom-type algebras
[Structure de G-algèbre à homotopie près sur le complexe des co-chaînes des algèbres de type hom]
Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1090-1099.

Une algèbre hom-associative est une algèbre dont l'associativité est tordue par un homomorphisme d'algèbre. Nous montrons que le complexe des co-chaînes de type Hochschild d'une algèbre hom-associative porte une structure de G-algèbre à homotopie près. Comme conséquence, nous obtenons une structure d'algèbre de Gerstenhaber sur la cohomologie des algèbres hom-associatives. Nous arrivons également à des résultats similaires pour les hom-dialgèbres.

A hom-associative algebra is an algebra whose associativity is twisted by an algebra homomorphism. We show that the Hochschild type cochain complex of a hom-associative algebra carries a homotopy G-algebra structure. As a consequence, we get a Gerstenhaber algebra structure on the cohomology of a hom-associative algebra. We also find similar results for hom-dialgebras.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.11.001

Apurba Das 1

1 Indian Statistical Institute, Kolkata, Stat-Math Unit, 203 BT Road, Kolkata, 700108, India
@article{CRMATH_2018__356_11-12_1090_0,
     author = {Apurba Das},
     title = {Homotopy {\protect\emph{G}-algebra} structure on the cochain complex of hom-type algebras},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1090--1099},
     publisher = {Elsevier},
     volume = {356},
     number = {11-12},
     year = {2018},
     doi = {10.1016/j.crma.2018.11.001},
     language = {en},
}
TY  - JOUR
AU  - Apurba Das
TI  - Homotopy G-algebra structure on the cochain complex of hom-type algebras
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 1090
EP  - 1099
VL  - 356
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2018.11.001
LA  - en
ID  - CRMATH_2018__356_11-12_1090_0
ER  - 
%0 Journal Article
%A Apurba Das
%T Homotopy G-algebra structure on the cochain complex of hom-type algebras
%J Comptes Rendus. Mathématique
%D 2018
%P 1090-1099
%V 356
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2018.11.001
%G en
%F CRMATH_2018__356_11-12_1090_0
Apurba Das. Homotopy G-algebra structure on the cochain complex of hom-type algebras. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1090-1099. doi : 10.1016/j.crma.2018.11.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.11.001/

[1] F. Ammar; Z. Ejbehi; A. Makhlouf Cohomology and deformations of hom-algebras, J. Lie Theory, Volume 21 (2011) no. 4, pp. 813-836

[2] A. Das Gerstenhaber algebra structure on the cohomology of a hom-associative algebra | arXiv

[3] A. Frabetti Dialgebra (co)homology with coefficients, Dialgebras and Related Operads, Lecture Notes in Math., vol. 1763, Springer, Berlin, 2001, pp. 67-103

[4] M. Gerstenhaber The cohomology structure of an associative ring, Ann. of Math. (2), Volume 78 (1963), pp. 267-288

[5] M. Gerstenhaber; A.A. Voronov Homotopy G-algebras and moduli space operad, Int. Math. Res. Not., Volume 1995 (1995) no. 3, pp. 141-153

[6] E. Getzler; J.D.S. Jones Operads, homotopy algebra and iterated integrals for double loop spaces (preprint) | arXiv

[7] J.T. Hartwig; D. Larsson; S.D. Silvestrov Deformations of Lie algebras using σ-derivations, J. Algebra, Volume 295 (2006), pp. 314-361

[8] J.-L. Loday; A. Frabetti; F. Chapoton; F. Goichot Dialgebras, Dialgebras and Related Operads, Lecture Notes in Math., vol. 1763, Springer, Berlin, 2001, pp. 7-66

[9] A. Majumder; G. Mukherjee Dialgebra cohomology as a G-algebra, Trans. Amer. Math. Soc., Volume 356 (2004) no. 6, pp. 2443-2457

[10] A. Makhlouf; S. Silvestrov Hom-algebra structures, J. Gen. Lie Theory Appl., Volume 2 (2008) no. 2, pp. 51-64

[11] A. Makhlouf; S. Silvestrov Notes on 1-parameter formal deformations of hom-associative and hom-Lie algebras, Forum Math., Volume 22 (2010) no. 4, pp. 715-739

[12] D. Yau Gerstenhaber structure and Deligne's conjecture for Loday algebras, J. Pure Appl. Algebra, Volume 209 (2007) no. 3, pp. 739-752

[13] D. Yau Enveloping algebras of hom-Lie algebras, J. Gen. Lie Theory Appl., Volume 2 (2008) no. 2, pp. 95-108

Cité par Sources :

Commentaires - Politique