Comptes Rendus
Lie algebras/Mathematical physics
Generalized cluster structure on the Drinfeld double of GLn
[Structures d'algébres amassées généralisées sur le double de Drinfeld du group GLn]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 345-349.

On construit des structures d'algèbres amassées généralisées compatibles avec le crochet de Poisson sur le double de Drinfeld du group GLn muni de sa structure de Poisson–Lie usuelle. On en déduit une structure d'algèbre amassée généralisée sur GLn compatible avec l'image directe du crochet de Poisson dual.

We construct a generalized cluster structure compatible with the Poisson bracket on the Drinfeld double of the standard Poisson–Lie group GLn and derive from it a generalized cluster structure in GLn compatible with the push-forward of the dual Poisson–Lie bracket.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.01.006

Michael Gekhtman 1 ; Michael Shapiro 2 ; Alek Vainshtein 3

1 Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA
2 Department of Mathematics, Michigan State University, East Lansing, MI 48823, USA
3 Department of Mathematics & Department of Computer Science, University of Haifa, Haifa, Mount Carmel 31905, Israel
@article{CRMATH_2016__354_4_345_0,
     author = {Michael Gekhtman and Michael Shapiro and Alek Vainshtein},
     title = {Generalized cluster structure on the {Drinfeld} double of {\protect\emph{GL}\protect\textsubscript{\protect\emph{n}}}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {345--349},
     publisher = {Elsevier},
     volume = {354},
     number = {4},
     year = {2016},
     doi = {10.1016/j.crma.2016.01.006},
     language = {en},
}
TY  - JOUR
AU  - Michael Gekhtman
AU  - Michael Shapiro
AU  - Alek Vainshtein
TI  - Generalized cluster structure on the Drinfeld double of GLn
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 345
EP  - 349
VL  - 354
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2016.01.006
LA  - en
ID  - CRMATH_2016__354_4_345_0
ER  - 
%0 Journal Article
%A Michael Gekhtman
%A Michael Shapiro
%A Alek Vainshtein
%T Generalized cluster structure on the Drinfeld double of GLn
%J Comptes Rendus. Mathématique
%D 2016
%P 345-349
%V 354
%N 4
%I Elsevier
%R 10.1016/j.crma.2016.01.006
%G en
%F CRMATH_2016__354_4_345_0
Michael Gekhtman; Michael Shapiro; Alek Vainshtein. Generalized cluster structure on the Drinfeld double of GLn. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 345-349. doi : 10.1016/j.crma.2016.01.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.006/

[1] A. Belavin; V. Drinfeld Solutions of the classical Yang–Baxter equation for simple Lie algebras, Funkc. Anal. Prilozh., Volume 16 (1982), pp. 1-29

[2] A. Berenstein; S. Fomin; A. Zelevinsky Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., Volume 126 (2005), pp. 1-52

[3] R. Brahami Cluster χ-varieties for dual Poisson–Lie groups. I, Algebra Anal., Volume 22 (2010), pp. 14-104

[4] L. Chekhov; M. Shapiro Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables, Int. Math. Res. Not., Volume 2014 (2014) no. 10, pp. 2746-2772

[5] M. Gekhtman; M. Shapiro; A. Vainshtein Cluster algebras and Poisson geometry, Mosc. Math. J., Volume 3 (2003), pp. 899-934

[6] M. Gekhtman; M. Shapiro; A. Vainshtein Cluster Algebras and Poisson Geometry, Mathematical Surveys and Monographs, vol. 167, The American Mathematical Society, Providence, RI, USA, 2010

[7] M. Gekhtman; M. Shapiro; A. Vainshtein Cluster structures on simple complex Lie groups and Belavin–Drinfeld classification, Mosc. Math. J., Volume 12 (2012), pp. 293-312

[8] M. Gekhtman; M. Shapiro; A. Vainshtein Cremmer–Gervais cluster structure on SLn, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 27, pp. 9688-9695

[9] M. Gekhtman; M. Shapiro; A. Vainshtein Exotic cluster structures on SLn: the Cremmer–Gervais case, Mem. Amer. Math. Soc. (2016) (in press) | arXiv

[10] A. Reyman; M. Semenov-Tian-Shansky Group-theoretical methods in the theory of finite-dimensional integrable systems, Encyclopaedia of Mathematical Sciences, vol. 16, Springer-Verlag, Berlin, 1994, pp. 116-225

Cité par Sources :

Commentaires - Politique