[Structures d'algébres amassées généralisées sur le double de Drinfeld du group GLn]
On construit des structures d'algèbres amassées généralisées compatibles avec le crochet de Poisson sur le double de Drinfeld du group muni de sa structure de Poisson–Lie usuelle. On en déduit une structure d'algèbre amassée généralisée sur compatible avec l'image directe du crochet de Poisson dual.
We construct a generalized cluster structure compatible with the Poisson bracket on the Drinfeld double of the standard Poisson–Lie group and derive from it a generalized cluster structure in compatible with the push-forward of the dual Poisson–Lie bracket.
Accepté le :
Publié le :
Michael Gekhtman 1 ; Michael Shapiro 2 ; Alek Vainshtein 3
@article{CRMATH_2016__354_4_345_0, author = {Michael Gekhtman and Michael Shapiro and Alek Vainshtein}, title = {Generalized cluster structure on the {Drinfeld} double of {\protect\emph{GL}\protect\textsubscript{\protect\emph{n}}}}, journal = {Comptes Rendus. Math\'ematique}, pages = {345--349}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2016.01.006}, language = {en}, }
TY - JOUR AU - Michael Gekhtman AU - Michael Shapiro AU - Alek Vainshtein TI - Generalized cluster structure on the Drinfeld double of GLn JO - Comptes Rendus. Mathématique PY - 2016 SP - 345 EP - 349 VL - 354 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2016.01.006 LA - en ID - CRMATH_2016__354_4_345_0 ER -
Michael Gekhtman; Michael Shapiro; Alek Vainshtein. Generalized cluster structure on the Drinfeld double of GLn. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 345-349. doi : 10.1016/j.crma.2016.01.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.006/
[1] Solutions of the classical Yang–Baxter equation for simple Lie algebras, Funkc. Anal. Prilozh., Volume 16 (1982), pp. 1-29
[2] Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., Volume 126 (2005), pp. 1-52
[3] Cluster χ-varieties for dual Poisson–Lie groups. I, Algebra Anal., Volume 22 (2010), pp. 14-104
[4] Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables, Int. Math. Res. Not., Volume 2014 (2014) no. 10, pp. 2746-2772
[5] Cluster algebras and Poisson geometry, Mosc. Math. J., Volume 3 (2003), pp. 899-934
[6] Cluster Algebras and Poisson Geometry, Mathematical Surveys and Monographs, vol. 167, The American Mathematical Society, Providence, RI, USA, 2010
[7] Cluster structures on simple complex Lie groups and Belavin–Drinfeld classification, Mosc. Math. J., Volume 12 (2012), pp. 293-312
[8] Cremmer–Gervais cluster structure on , Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 27, pp. 9688-9695
[9] Exotic cluster structures on : the Cremmer–Gervais case, Mem. Amer. Math. Soc. (2016) (in press) | arXiv
[10] Group-theoretical methods in the theory of finite-dimensional integrable systems, Encyclopaedia of Mathematical Sciences, vol. 16, Springer-Verlag, Berlin, 1994, pp. 116-225
Cité par Sources :
Commentaires - Politique