[Structures d'algébres amassées généralisées sur le double de Drinfeld du group GLn]
On construit des structures d'algèbres amassées généralisées compatibles avec le crochet de Poisson sur le double de Drinfeld du group
We construct a generalized cluster structure compatible with the Poisson bracket on the Drinfeld double of the standard Poisson–Lie group
Accepté le :
Publié le :
Michael Gekhtman 1 ; Michael Shapiro 2 ; Alek Vainshtein 3
@article{CRMATH_2016__354_4_345_0, author = {Michael Gekhtman and Michael Shapiro and Alek Vainshtein}, title = {Generalized cluster structure on the {Drinfeld} double of {\protect\emph{GL}\protect\textsubscript{\protect\emph{n}}}}, journal = {Comptes Rendus. Math\'ematique}, pages = {345--349}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2016.01.006}, language = {en}, }
TY - JOUR AU - Michael Gekhtman AU - Michael Shapiro AU - Alek Vainshtein TI - Generalized cluster structure on the Drinfeld double of GLn JO - Comptes Rendus. Mathématique PY - 2016 SP - 345 EP - 349 VL - 354 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2016.01.006 LA - en ID - CRMATH_2016__354_4_345_0 ER -
Michael Gekhtman; Michael Shapiro; Alek Vainshtein. Generalized cluster structure on the Drinfeld double of GLn. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 345-349. doi : 10.1016/j.crma.2016.01.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.006/
[1] Solutions of the classical Yang–Baxter equation for simple Lie algebras, Funkc. Anal. Prilozh., Volume 16 (1982), pp. 1-29
[2] Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., Volume 126 (2005), pp. 1-52
[3] Cluster χ-varieties for dual Poisson–Lie groups. I, Algebra Anal., Volume 22 (2010), pp. 14-104
[4] Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables, Int. Math. Res. Not., Volume 2014 (2014) no. 10, pp. 2746-2772
[5] Cluster algebras and Poisson geometry, Mosc. Math. J., Volume 3 (2003), pp. 899-934
[6] Cluster Algebras and Poisson Geometry, Mathematical Surveys and Monographs, vol. 167, The American Mathematical Society, Providence, RI, USA, 2010
[7] Cluster structures on simple complex Lie groups and Belavin–Drinfeld classification, Mosc. Math. J., Volume 12 (2012), pp. 293-312
[8] Cremmer–Gervais cluster structure on
[9] Exotic cluster structures on
[10] Group-theoretical methods in the theory of finite-dimensional integrable systems, Encyclopaedia of Mathematical Sciences, vol. 16, Springer-Verlag, Berlin, 1994, pp. 116-225
Cité par Sources :
Commentaires - Politique