Comptes Rendus
Mathematical analysis/Potential theory
Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension-one Hausdorff measure
[La mesure harmonique est toujours rectifiable dès qu'elle est absolument continue par rapport à la mesure de Hausdorff de codimension 1]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 351-355.

Dans cet article, nous présentons les grandes lignes de la démonstration prouvant que, pour tout ensemble connexe ouvert ΩRn+1, n1, et pour tout EΩ avec 0<Hn(E)<, la continuité absolue de la mesure harmonique ω par rapport à la mesure de Hausdorff sur E implique la rectifiabilité de ω|E.

In the present paper, we sketch the proof of the fact that for any open connected set ΩRn+1, n1, and any EΩ with 0<Hn(E)<, absolute continuity of the harmonic measure ω with respect to the Hausdorff measure on E implies that ω|E is rectifiable.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.01.012
Jonas Azzam 1 ; Steve Hofmann 2 ; José María Martell 3 ; Svitlana Mayboroda 4 ; Mihalis Mourgoglou 1 ; Xavier Tolsa 1 ; Alexander Volberg 5

1 Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Catalunya
2 Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
3 Instituto de Ciencias Matemáticas CSIC–UAM–UC3M–UCM, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
4 Department of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
5 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
@article{CRMATH_2016__354_4_351_0,
     author = {Jonas Azzam and Steve Hofmann and Jos\'e Mar{\'\i}a Martell and Svitlana Mayboroda and Mihalis Mourgoglou and Xavier Tolsa and Alexander Volberg},
     title = {Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension-one {Hausdorff} measure},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {351--355},
     publisher = {Elsevier},
     volume = {354},
     number = {4},
     year = {2016},
     doi = {10.1016/j.crma.2016.01.012},
     language = {en},
}
TY  - JOUR
AU  - Jonas Azzam
AU  - Steve Hofmann
AU  - José María Martell
AU  - Svitlana Mayboroda
AU  - Mihalis Mourgoglou
AU  - Xavier Tolsa
AU  - Alexander Volberg
TI  - Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension-one Hausdorff measure
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 351
EP  - 355
VL  - 354
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2016.01.012
LA  - en
ID  - CRMATH_2016__354_4_351_0
ER  - 
%0 Journal Article
%A Jonas Azzam
%A Steve Hofmann
%A José María Martell
%A Svitlana Mayboroda
%A Mihalis Mourgoglou
%A Xavier Tolsa
%A Alexander Volberg
%T Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension-one Hausdorff measure
%J Comptes Rendus. Mathématique
%D 2016
%P 351-355
%V 354
%N 4
%I Elsevier
%R 10.1016/j.crma.2016.01.012
%G en
%F CRMATH_2016__354_4_351_0
Jonas Azzam; Steve Hofmann; José María Martell; Svitlana Mayboroda; Mihalis Mourgoglou; Xavier Tolsa; Alexander Volberg. Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension-one Hausdorff measure. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 351-355. doi : 10.1016/j.crma.2016.01.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.012/

[1] J. Azzam, S. Hoffman, M. Mourgoglou, J.M. Martell, S. Mayboroda, X. Tolsa, A. Volberg, Rectifiability of harmonic measure, preprint, June 2015.

[2] J. Azzam; M. Mourgoglou; X. Tolsa Singular sets for harmonic measure on locally flat domains with locally finite surface measure | arXiv

[3] C.J. Bishop; P.W. Jones Harmonic measure and arclength, Ann. of Math. (2), Volume 132 (1990) no. 3, pp. 511-547

[4] J. Bourgain On the Hausdorff dimension of harmonic measure in higher dimension, Invent. Math., Volume 87 (1987) no. 3, pp. 477-483

[5] L. Carleson On the distortion of sets on a Jordan curve under conformal mapping, Duke Math. J., Volume 40 (1973), pp. 547-559

[6] G. David; P. Mattila Removable sets for Lipschitz harmonic functions, Rev. Mat. Iberoam., Volume 16 (2000), pp. 137-216

[7] S. Hofmann; J.M. Martell Uniform rectifiability and harmonic measure, I: uniform rectifiability implies Poisson kernels in Lp, Ann. Sci. Éc. Norm. Super., Volume 47 (2014) no. 3, pp. 577-654

[8] S. Hofmann, J.M. Martell, Uniform rectifiability and harmonic measure, IV: Ahlfors regularity plus Poisson kernels in Lp implies uniform rectifiability, preprint.

[9] S. Hofmann; J.M. Martell; S. Mayboroda Uniform rectifiability and harmonic measure, III: Riesz transform bounds imply uniform rectifiability of boundaries of 1-sided NTA domains, Int. Math. Res. Not., Volume 2014 (2014) no. 10, pp. 2702-2729

[10] S. Hofmann; J.M. Martell; S. Mayboroda; X. Tolsa; A. Volberg Absolute continuity between the surface measure and harmonic measure implies rectifiability, 2015 (preprint) | arXiv

[11] S. Hofmann; J.M. Martell; I. Uriarte-Tuero Uniform rectifiability and harmonic measure, II: Poisson kernels in Lp imply uniform rectifiability, Duke Math. J., Volume 163 (2014) no. 8, pp. 1601-1654

[12] P. Jones; T. Wolff Hausdorff dimension of harmonic measures in the plane, Acta Math., Volume 161 (1988) no. 1–2, pp. 131-144

[13] J.C. Léger Menger curvature and rectifiability, Ann. of Math., Volume 149 (1999), pp. 831-869

[14] F. Nazarov; X. Tolsa; A. Volberg On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1, Acta Math., Volume 213 (2014) no. 2, pp. 237-321

[15] F. Nazarov; X. Tolsa; A. Volberg The Riesz transform Lipschitz harmonic functions, Publ. Mat., Volume 58 (2014), pp. 517-532

[16] F. Nazarov; S. Treil; A. Volberg The Tb-theorem on non-homogeneous spaces that proves a conjecture of Vitushkin, 2002 (CRM preprint No. 519, pp. 1–84) | arXiv

[17] X. Tolsa Principal values for the Cauchy integral and rectifiability, Proc. Amer. Math. Soc., Volume 128 (2000) no. 7, pp. 2111-2119

[18] X. Tolsa Analytic capacity, the Cauchy transform, and non-homogeneous Calderón–Zygmund theory, Progress in Mathematics, vol. 307, Birkhäuser Verlag, Basel, Switzerland, 2014

[19] A. Volberg Calderón–Zygmund capacities and operators on nonhomogeneous spaces, CBMS Reg. Conf. Ser. Math., vol. 100, Amer. Math. Soc., Providence, RI, USA, 2003

[20] T. Wolff Counterexamples with harmonic gradients in R3, Princeton, NJ, 1991 (Princeton Math. Ser.), Volume vol. 42, Princeton Univ. Press, Princeton, NJ, USA (1995), pp. 321-384

Cité par Sources :

We acknowledge the support of the following grants: the second author – NSF DMS 1361701, the third author – SEV-2011-0087 and (FP7/2007-2013)/ ERC agreement no. 615112 HAPDEGMT, the fourth author – Sloan Fellowship, NSF DMS 1344235, NSF DMS 1220089, NSF DMR 0212302, the sixth author – ERC 320501 FP7/2007-2013 (which also funded the first and fifth authors), 2014-SGR-75, MTM2013-44304-P, ITN MAnET (FP7-607647), the last author – NSF DMS 1265549. The results of this paper were obtained at the Institut Henri Poincaré, and at the 2015 ICMAT program Analysis and Geometry in Metric Spaces. All authors would like to express their gratitude to these institutions for their support and nice working environments.

Commentaires - Politique


Ces articles pourraient vous intéresser

Finite square function implies integer dimension

Svitlana Mayboroda; Alexander Volberg

C. R. Math (2009)


Boundedness of the square function and rectifiability

Svitlana Mayboroda; Alexander Volberg

C. R. Math (2009)


The Plemelj–Privalov theorem in Clifford analysis

Ricardo Abreu Blaya; Juan Bory Reyes; Tania Moreno García

C. R. Math (2009)