In the present paper, we sketch the proof of the fact that for any open connected set , , and any with , absolute continuity of the harmonic measure ω with respect to the Hausdorff measure on E implies that is rectifiable.
Dans cet article, nous présentons les grandes lignes de la démonstration prouvant que, pour tout ensemble connexe ouvert , , et pour tout avec , la continuité absolue de la mesure harmonique ω par rapport à la mesure de Hausdorff sur E implique la rectifiabilité de .
Accepted:
Published online:
Jonas Azzam 1; Steve Hofmann 2; José María Martell 3; Svitlana Mayboroda 4; Mihalis Mourgoglou 1; Xavier Tolsa 1; Alexander Volberg 5
@article{CRMATH_2016__354_4_351_0, author = {Jonas Azzam and Steve Hofmann and Jos\'e Mar{\'\i}a Martell and Svitlana Mayboroda and Mihalis Mourgoglou and Xavier Tolsa and Alexander Volberg}, title = {Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension-one {Hausdorff} measure}, journal = {Comptes Rendus. Math\'ematique}, pages = {351--355}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2016.01.012}, language = {en}, }
TY - JOUR AU - Jonas Azzam AU - Steve Hofmann AU - José María Martell AU - Svitlana Mayboroda AU - Mihalis Mourgoglou AU - Xavier Tolsa AU - Alexander Volberg TI - Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension-one Hausdorff measure JO - Comptes Rendus. Mathématique PY - 2016 SP - 351 EP - 355 VL - 354 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2016.01.012 LA - en ID - CRMATH_2016__354_4_351_0 ER -
%0 Journal Article %A Jonas Azzam %A Steve Hofmann %A José María Martell %A Svitlana Mayboroda %A Mihalis Mourgoglou %A Xavier Tolsa %A Alexander Volberg %T Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension-one Hausdorff measure %J Comptes Rendus. Mathématique %D 2016 %P 351-355 %V 354 %N 4 %I Elsevier %R 10.1016/j.crma.2016.01.012 %G en %F CRMATH_2016__354_4_351_0
Jonas Azzam; Steve Hofmann; José María Martell; Svitlana Mayboroda; Mihalis Mourgoglou; Xavier Tolsa; Alexander Volberg. Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension-one Hausdorff measure. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 351-355. doi : 10.1016/j.crma.2016.01.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.012/
[1] J. Azzam, S. Hoffman, M. Mourgoglou, J.M. Martell, S. Mayboroda, X. Tolsa, A. Volberg, Rectifiability of harmonic measure, preprint, June 2015.
[2] Singular sets for harmonic measure on locally flat domains with locally finite surface measure | arXiv
[3] Harmonic measure and arclength, Ann. of Math. (2), Volume 132 (1990) no. 3, pp. 511-547
[4] On the Hausdorff dimension of harmonic measure in higher dimension, Invent. Math., Volume 87 (1987) no. 3, pp. 477-483
[5] On the distortion of sets on a Jordan curve under conformal mapping, Duke Math. J., Volume 40 (1973), pp. 547-559
[6] Removable sets for Lipschitz harmonic functions, Rev. Mat. Iberoam., Volume 16 (2000), pp. 137-216
[7] Uniform rectifiability and harmonic measure, I: uniform rectifiability implies Poisson kernels in , Ann. Sci. Éc. Norm. Super., Volume 47 (2014) no. 3, pp. 577-654
[8] S. Hofmann, J.M. Martell, Uniform rectifiability and harmonic measure, IV: Ahlfors regularity plus Poisson kernels in implies uniform rectifiability, preprint.
[9] Uniform rectifiability and harmonic measure, III: Riesz transform bounds imply uniform rectifiability of boundaries of 1-sided NTA domains, Int. Math. Res. Not., Volume 2014 (2014) no. 10, pp. 2702-2729
[10] Absolute continuity between the surface measure and harmonic measure implies rectifiability, 2015 (preprint) | arXiv
[11] Uniform rectifiability and harmonic measure, II: Poisson kernels in imply uniform rectifiability, Duke Math. J., Volume 163 (2014) no. 8, pp. 1601-1654
[12] Hausdorff dimension of harmonic measures in the plane, Acta Math., Volume 161 (1988) no. 1–2, pp. 131-144
[13] Menger curvature and rectifiability, Ann. of Math., Volume 149 (1999), pp. 831-869
[14] On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1, Acta Math., Volume 213 (2014) no. 2, pp. 237-321
[15] The Riesz transform Lipschitz harmonic functions, Publ. Mat., Volume 58 (2014), pp. 517-532
[16] The Tb-theorem on non-homogeneous spaces that proves a conjecture of Vitushkin, 2002 (CRM preprint No. 519, pp. 1–84) | arXiv
[17] Principal values for the Cauchy integral and rectifiability, Proc. Amer. Math. Soc., Volume 128 (2000) no. 7, pp. 2111-2119
[18] Analytic capacity, the Cauchy transform, and non-homogeneous Calderón–Zygmund theory, Progress in Mathematics, vol. 307, Birkhäuser Verlag, Basel, Switzerland, 2014
[19] Calderón–Zygmund capacities and operators on nonhomogeneous spaces, CBMS Reg. Conf. Ser. Math., vol. 100, Amer. Math. Soc., Providence, RI, USA, 2003
[20] Counterexamples with harmonic gradients in , Princeton, NJ, 1991 (Princeton Math. Ser.), Volume vol. 42, Princeton Univ. Press, Princeton, NJ, USA (1995), pp. 321-384
Cited by Sources:
☆ We acknowledge the support of the following grants: the second author – NSF DMS 1361701, the third author – SEV-2011-0087 and (FP7/2007-2013)/ ERC agreement no. 615112 HAPDEGMT, the fourth author – Sloan Fellowship, NSF DMS 1344235, NSF DMS 1220089, NSF DMR 0212302, the sixth author – ERC 320501 FP7/2007-2013 (which also funded the first and fifth authors), 2014-SGR-75, MTM2013-44304-P, ITN MAnET (FP7-607647), the last author – NSF DMS 1265549. The results of this paper were obtained at the Institut Henri Poincaré, and at the 2015 ICMAT program Analysis and Geometry in Metric Spaces. All authors would like to express their gratitude to these institutions for their support and nice working environments.
Comments - Policy