Comptes Rendus
Complex analysis
On estimates for the coefficients of a polynomial
Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 357-363.

If P(z)=j=0najzj is a polynomial of degree n, then it was proved by Rahman and Schmeisser [4] that for every p[0,+],

|an|+|a0|2Pp1+zp.
In this paper, various estimates for the coefficients of a polynomial P are obtained which among other things include the above inequality as a special case.

Si P(z)=j=0najzj est un polynôme de degré n, Rahman et Schmeisser [4] ont montré que, pour tout p[0,+], on a

|an|+|a0|2Pp1+zp.
Nous obtenons ici diverses majorations pour les coefficients d'un polynôme qui, entre autres, incluent l'inégalité ci-dessus comme cas particulier.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.01.018

Suhail Gulzar 1

1 Islamic University of Science and Technology, Kashmir, Awantipora 192122, India
@article{CRMATH_2016__354_4_357_0,
     author = {Suhail Gulzar},
     title = {On estimates for the coefficients of a polynomial},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {357--363},
     publisher = {Elsevier},
     volume = {354},
     number = {4},
     year = {2016},
     doi = {10.1016/j.crma.2016.01.018},
     language = {en},
}
TY  - JOUR
AU  - Suhail Gulzar
TI  - On estimates for the coefficients of a polynomial
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 357
EP  - 363
VL  - 354
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2016.01.018
LA  - en
ID  - CRMATH_2016__354_4_357_0
ER  - 
%0 Journal Article
%A Suhail Gulzar
%T On estimates for the coefficients of a polynomial
%J Comptes Rendus. Mathématique
%D 2016
%P 357-363
%V 354
%N 4
%I Elsevier
%R 10.1016/j.crma.2016.01.018
%G en
%F CRMATH_2016__354_4_357_0
Suhail Gulzar. On estimates for the coefficients of a polynomial. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 357-363. doi : 10.1016/j.crma.2016.01.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.018/

[1] V.V. Arestov On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 45 (1981), pp. 3-22 (in Russian); English translation: Math. USSR, Izv., 18, 1982, pp. 1-17

[2] R.B. Gardner; N.K. Govil An Lp inequality for a polynomial and its derivative, J. Math. Anal. Appl., Volume 193 (1995), pp. 490-496

[3] Q.I. Rahman; G. Schmeisser Analytic Theory of Polynomials, Oxford University Press, New York, 2002

[4] Q.I. Rahman; G. Schmeisser Lp inequalities for polynomial, J. Approx. Theory, Volume 53 (1988), pp. 26-32

[5] C. Visser A simple proof of certain inequalities concerning polynomials, Proc. K. Ned. Akad. Wet., Volume 47 (1945), pp. 276-281

Cited by Sources:

Comments - Politique