If is a polynomial of degree n, then it was proved by Rahman and Schmeisser [4] that for every ,
Si est un polynôme de degré n, Rahman et Schmeisser [4] ont montré que, pour tout , on a
Accepted:
Published online:
Suhail Gulzar 1
@article{CRMATH_2016__354_4_357_0, author = {Suhail Gulzar}, title = {On estimates for the coefficients of a polynomial}, journal = {Comptes Rendus. Math\'ematique}, pages = {357--363}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2016.01.018}, language = {en}, }
Suhail Gulzar. On estimates for the coefficients of a polynomial. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 357-363. doi : 10.1016/j.crma.2016.01.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.018/
[1] On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 45 (1981), pp. 3-22 (in Russian); English translation: Math. USSR, Izv., 18, 1982, pp. 1-17
[2] An inequality for a polynomial and its derivative, J. Math. Anal. Appl., Volume 193 (1995), pp. 490-496
[3] Analytic Theory of Polynomials, Oxford University Press, New York, 2002
[4] inequalities for polynomial, J. Approx. Theory, Volume 53 (1988), pp. 26-32
[5] A simple proof of certain inequalities concerning polynomials, Proc. K. Ned. Akad. Wet., Volume 47 (1945), pp. 276-281
Cited by Sources:
Comments - Politique