Comptes Rendus
Complex analysis
Faber polynomial coefficients of bi-subordinate functions
[Polynômes de Faber et coefficients des fonctions bi-subordonnées]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 365-370.

Une fonction est dite bi-univalente dans le disque unité ouvert D si elle et son inverse sont univalentes dans D. Dans le même ordre, une fonction est dite bi-subordonnée dans D si elle et son inverse sont subordonnées à une fonction donnée dans D. Le comportement des coefficients de telles fonctions est imprévisible et inconnu. Dans cette Note, nous utilisons les développements en polynômes de Faber afin d'établir une borne supérieure pour le ne (n3) coefficient d'une fonction bi-subordonnée, lorsque les n2 précédents coefficients sont nuls. Nous donnons également des bornes plus précises pour les deux premiers coefficients de telles fonctions.

A function is said to be bi-univalent in the open unit disk D if both the function and its inverse map are univalent in D. By the same token, a function is said to be bi-subordinate in D if both the function and its inverse map are subordinate to certain given function in D. The behavior of the coefficients of such functions are unpredictable and unknown. In this paper, we use the Faber polynomial expansions to find upper bounds for the n-th (n3) coefficients of classes of bi-subordinate functions subject to a gap series condition as well as determining bounds for the first two coefficients of such functions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.01.013

Samaneh G. Hamidi 1 ; Jay M. Jahangiri 2

1 Department of Mathematics, Brigham Young University, Provo, UT 84604, USA
2 Department of Mathematical Sciences, Kent State University, Burton, OH 44021, USA
@article{CRMATH_2016__354_4_365_0,
     author = {Samaneh G. Hamidi and Jay M. Jahangiri},
     title = {Faber polynomial coefficients of bi-subordinate functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {365--370},
     publisher = {Elsevier},
     volume = {354},
     number = {4},
     year = {2016},
     doi = {10.1016/j.crma.2016.01.013},
     language = {en},
}
TY  - JOUR
AU  - Samaneh G. Hamidi
AU  - Jay M. Jahangiri
TI  - Faber polynomial coefficients of bi-subordinate functions
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 365
EP  - 370
VL  - 354
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2016.01.013
LA  - en
ID  - CRMATH_2016__354_4_365_0
ER  - 
%0 Journal Article
%A Samaneh G. Hamidi
%A Jay M. Jahangiri
%T Faber polynomial coefficients of bi-subordinate functions
%J Comptes Rendus. Mathématique
%D 2016
%P 365-370
%V 354
%N 4
%I Elsevier
%R 10.1016/j.crma.2016.01.013
%G en
%F CRMATH_2016__354_4_365_0
Samaneh G. Hamidi; Jay M. Jahangiri. Faber polynomial coefficients of bi-subordinate functions. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 365-370. doi : 10.1016/j.crma.2016.01.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.013/

[1] H. Airault Remarks on Faber polynomials, Int. Math. Forum, Volume 3 (2008) no. 9–12, pp. 449-456 (MR2386197)

[2] H. Airault; A. Bouali Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222 (MR2215663)

[3] H. Airault; J. Ren An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367 MR1914725 (2004c:17048)

[4] R.M. Ali; S.K. Lee; V. Ravichandran; S. Supramaniam Coefficient estimates for bi-univalent Ma–Minda starlike and convex functions, Appl. Math. Lett., Volume 25 (2012) no. 3, pp. 344-351 (MR2855984)

[5] S. Altınkaya; S. Yalçın Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces (2015) (5 pp., MR3319198)

[6] S. Altınkaya; S. Yalçın Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Acta Univ. Apulensis, Mat.-Inform., Volume 40 (2014), pp. 347-354 (MR3316514)

[7] S. Altınkaya; S. Yalçın Initial coefficient bounds for a general class of biunivalent functions, Int. J. Anal. (2014) (4 pp., MR3198331)

[8] S. Bulut Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 6, pp. 479-484 (MR3210128)

[9] E. Deniz Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., Volume 2 (2013) no. 1, pp. 49-60 (MR3322242)

[10] P.L. Duren Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983 (MR0708494)

[11] G. Faber Über polynomische Entwickelungen, Math. Ann., Volume 57 (1903) no. 3, pp. 389-408 (MR1511216)

[12] B.A. Frasin; M.K. Aouf New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011) no. 9, pp. 1569-1573 (MR2803711)

[13] S.G. Hamidi; J.M. Jahangiri Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 1, pp. 17-20 (MR3150761)

[14] S.G. Hamidi; J.M. Jahangiri Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc., Volume 41 (2015) no. 5, pp. 1103-1119

[15] J.M. Jahangiri On the coefficients of powers of a class of Bazilevic functions, Indian J. Pure Appl. Math., Volume 17 (1986) no. 9, pp. 1140-1144 (MR0864155)

[16] J.M. Jahangiri; S.G. Hamidi Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. (2013) (4 pp., MR3100751)

[17] J.M. Jahangiri; S.G. Hamidi; S. Abd Halim Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Soc. (2), Volume 3 (2014), pp. 633-640 (MR3234504)

[18] W. Janowski Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math., Volume 23 (1970/1971), pp. 159-177 (MR0267103)

[19] W. Janowski Some extremal problems for certain families of analytic functions, I, Ann. Pol. Math., Volume 28 (1973), pp. 297-326 (MR0328059)

[20] N. Magesh; J. Yamini Coefficient bounds for certain subclasses of bi-univalent functions, Int. Math. Forum, Volume 8 (2013), pp. 1337-1344 (MR3107010)

[21] H.M. Srivastava; A.K. Mishra; P. Gochhayat Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010) no. 10, pp. 1188-1192 (MR2665593)

[22] H.M. Srivastava; S.S. Eker; R.M. Ali Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, Volume 29 (2015) no. 8, pp. 1839-1845

[23] P. Zaprawa On the Fekete–Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, Volume 21 (2014) no. 1, pp. 169-178 (MR3178538)

  • Zeya Jia; Alina Alb Lupaş; Haifa Bin Jebreen; Georgia Irina Oros; Teodor Bulboacă; Qazi Zahoor Ahmad Fractional Differential Operator Based on Quantum Calculus and Bi-Close-to-Convex Functions, Mathematics, Volume 12 (2024) no. 13, p. 2026 | DOI:10.3390/math12132026
  • Mohammad Faisal Khan Certain new applications of Faber polynomial expansion for some new subclasses of υ-fold symmetric bi-univalent functions associated with q-calculus, AIMS Mathematics, Volume 8 (2023) no. 5, p. 10283 | DOI:10.3934/math.2023521
  • Ebrahim Analouei Adegani; Mostafa Jafari; Teodor Bulboacă; Paweł Zaprawa Coefficient Bounds for Some Families of Bi-Univalent Functions with Missing Coefficients, Axioms, Volume 12 (2023) no. 12, p. 1071 | DOI:10.3390/axioms12121071
  • Hari Mohan Srivastava; Isra Al-Shbeil; Qin Xin; Fairouz Tchier; Shahid Khan; Sarfraz Nawaz Malik Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative, Axioms, Volume 12 (2023) no. 6, p. 585 | DOI:10.3390/axioms12060585
  • Mohammad Faisal Khan; Suha B. Al-Shaikh; Ahmad A. Abubaker; Khaled Matarneh New Applications of Faber Polynomials and q-Fractional Calculus for a New Subclass of m-Fold Symmetric bi-Close-to-Convex Functions, Axioms, Volume 12 (2023) no. 6, p. 600 | DOI:10.3390/axioms12060600
  • Ferdous M. O. Tawfiq; Fairouz Tchier; Luminita-Ioana Cotîrlă Faber Polynomial Coefficient Inequalities for a Subclass of Bi-Close-To-Convex Functions Associated with Fractional Differential Operator, Fractal and Fractional, Volume 7 (2023) no. 12, p. 883 | DOI:10.3390/fractalfract7120883
  • Mohammad Faisal Khan; Mohammed AbaOud Some New Applications of the Faber Polynomial Expansion Method for Generalized Bi-Subordinate Functions of Complex Order γ Defined by q-Calculus, Fractal and Fractional, Volume 7 (2023) no. 3, p. 270 | DOI:10.3390/fractalfract7030270
  • Ridong Wang; Manoj Singh; Shahid Khan; Huo Tang; Mohammad Faisal Khan; Mustafa Kamal New Applications of Faber Polynomial Expansion for Analytical Bi-Close-to-Convex Functions Defined by Using q-Calculus, Mathematics, Volume 11 (2023) no. 5, p. 1217 | DOI:10.3390/math11051217
  • Chetan Swarup Certain New Applications of Faber Polynomial Expansion for a New Class of bi-Univalent Functions Associated with Symmetric q-Calculus, Symmetry, Volume 15 (2023) no. 7, p. 1407 | DOI:10.3390/sym15071407
  • Zeya Jia; Nazar Khan; Shahid Khan; Bilal Khan Faber polynomial coefficients estimates for certain subclasses of q-Mittag-Leffler-Type analytic and bi-univalent functions, AIMS Mathematics, Volume 7 (2022) no. 2, p. 2512 | DOI:10.3934/math.2022141
  • Sheza. M. El-Deeb; Gangadharan Murugusundaramoorthy; Kaliyappan Vijaya; Alhanouf Alburaikan Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial, AIMS Mathematics, Volume 7 (2022) no. 2, p. 2989 | DOI:10.3934/math.2022165
  • Ekram E. Ali; Abdel Moneim Lashin; Abeer M. Albalahi; Baowei Feng Coefficient Estimates for Some Classes of Biunivalent Function Associated with Jackson q -Difference Operator, Journal of Function Spaces, Volume 2022 (2022), p. 1 | DOI:10.1155/2022/2365918
  • Jie Zhai; Rekha Srivastava; Jin-Lin Liu Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions, Mathematics, Volume 10 (2022) no. 17, p. 3073 | DOI:10.3390/math10173073
  • Ebrahim Analouei Adegani; Nak Eun Cho; Davood Alimohammadi; Ahmad Motamednezhad Coefficient bounds for certain two subclasses of bi-univalent functions, AIMS Mathematics, Volume 6 (2021) no. 9, p. 9126 | DOI:10.3934/math.2021530
  • Om P. AHUJA; Asena ÇETİNKAYA Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with (p,q) Calculus Operators, Fundamental Journal of Mathematics and Applications, Volume 4 (2021) no. 1, p. 17 | DOI:10.33401/fujma.831447
  • Zeya Jia; Shahid Khan; Nazar Khan; Bilal Khan; Muhammad Asif; Richard I. Avery Faber Polynomial Coefficient Bounds form-Fold Symmetric Analytic and Bi-univalent Functions Involvingq-Calculus, Journal of Function Spaces, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/5232247
  • Abdel Moneim Y. Lashin; Abeer O. Badghaish; Amani Z. Bajamal Bounds for Two New Subclasses of Bi-Univalent Functions Associated with Legendre Polynomials, Mathematics, Volume 9 (2021) no. 24, p. 3188 | DOI:10.3390/math9243188
  • Adel A. Attiya; Abdel Moneim Lashin; Ekram E. Ali; Praveen Agarwal Coefficient Bounds for Certain Classes of Analytic Functions Associated with Faber Polynomial, Symmetry, Volume 13 (2021) no. 2, p. 302 | DOI:10.3390/sym13020302
  • K. Rajya Laxmi; R. Bharavi Sharma Second Hankel determinant with Fekete-Szegö parameter for some subclasses of bi-univalent functions using a symmetric q-derivative operator, Tbilisi Mathematical Journal, Volume 14 (2021) no. 3 | DOI:10.32513/tmj/19322008141
  • S. ALTıNKAYA; S. YALçıN CERTAIN CLASSES OF BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER ASSOCIATED WITH QUASI-SUBORDINATION INVOLVING (p, q) -DERIVATIVE OPERATOR, Kragujevac Journal of Mathematics, Volume 44 (2020) no. 4, p. 639 | DOI:10.46793/kgjmat2004.639a
  • Hari M. Srivastava; Ahmad Motamednezhad; Ebrahim Analouei Adegani Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator, Mathematics, Volume 8 (2020) no. 2, p. 172 | DOI:10.3390/math8020172
  • Sevtap Sümer Eker; Bilal Şeker; Sadettin Ece Coefficient bounds for subclasses of bi-univalent functions defined by fractional derivative operator, Tbilisi Mathematical Journal, Volume 13 (2020) no. 3 | DOI:10.32513/tbilisi/1601344894
  • Mostafa Jafari; Teodor Bulboaca; Ahmad Zireh; Ebrahim Analouei Adegani Simple criteria for univalence and coefficient bounds for a certain subclass of analytic functions, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics (2019), p. 394 | DOI:10.31801/cfsuasmas.596546
  • Ebrahim A. Adegani; Samaneh G. Hamidi; Jay M. Jahangiri; Ahmad Zireh Coefficient estimates for m-fold symmetric bi-subordinate functions, Hacettepe Journal of Mathematics and Statistics (2019), p. 1 | DOI:10.15672/hujms.545237
  • H. M. Srivastava; Şahsene Altınkaya; Sibel Yalçın Certain Subclasses of Bi-Univalent Functions Associated with the Horadam Polynomials, Iranian Journal of Science and Technology, Transactions A: Science, Volume 43 (2019) no. 4, p. 1873 | DOI:10.1007/s40995-018-0647-0
  • Sahsene Altınkaya Application of quasi-subordination for certain subclasses of bi-univalent functions of complex order, Malaya Journal of Matematik, Volume 07 (2019) no. 04, p. 681 | DOI:10.26637/mjm0704/0011
  • Şahsene Altınkaya; Sibel Yalçın; Serkan Çakmak A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers, Mathematics, Volume 7 (2019) no. 2, p. 160 | DOI:10.3390/math7020160
  • H. M. Srivastava; S. Sümer Eker; S. G. Hamidi; J. M. Jahangiri Faber Polynomial Coefficient Estimates for Bi-univalent Functions Defined by the Tremblay Fractional Derivative Operator, Bulletin of the Iranian Mathematical Society, Volume 44 (2018) no. 1, p. 149 | DOI:10.1007/s41980-018-0011-3
  • Emeka MAZI; Sahsene ALTINKAYA On a new subclass of bi-univalent functions satisfying subordinate conditions, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, Volume 68 (2018) no. 1, p. 724 | DOI:10.31801/cfsuasmas.464191
  • Ahmad Zireh; Ebrahim Analouei Adegani; Mahmood Bidkham Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate, Mathematica Slovaca, Volume 68 (2018) no. 2, p. 369 | DOI:10.1515/ms-2017-0108
  • Saqib Hussain; Shahid Khan; Muhammad Asad Zaighum; Maslina Darus; Zahid Shareef Coefficients Bounds for Certain Subclass of Biunivalent Functions Associated with Ruscheweyh q-Differential Operator, Journal of Complex Analysis, Volume 2017 (2017), p. 1 | DOI:10.1155/2017/2826514
  • S. Kanas; E. Analouei Adegani; A. Zireh An Unified Approach to Second Hankel Determinant of Bi-Subordinate Functions, Mediterranean Journal of Mathematics, Volume 14 (2017) no. 6 | DOI:10.1007/s00009-017-1031-6

Cité par 32 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: