[Polynômes de Faber et coefficients des fonctions bi-subordonnées]
A function is said to be bi-univalent in the open unit disk
Une fonction est dite bi-univalente dans le disque unité ouvert
Accepté le :
Publié le :
Samaneh G. Hamidi 1 ; Jay M. Jahangiri 2
@article{CRMATH_2016__354_4_365_0, author = {Samaneh G. Hamidi and Jay M. Jahangiri}, title = {Faber polynomial coefficients of bi-subordinate functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {365--370}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2016.01.013}, language = {en}, }
Samaneh G. Hamidi; Jay M. Jahangiri. Faber polynomial coefficients of bi-subordinate functions. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 365-370. doi : 10.1016/j.crma.2016.01.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.013/
[1] Remarks on Faber polynomials, Int. Math. Forum, Volume 3 (2008) no. 9–12, pp. 449-456 (MR2386197)
[2] Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222 (MR2215663)
[3] An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367 MR1914725 (2004c:17048)
[4] Coefficient estimates for bi-univalent Ma–Minda starlike and convex functions, Appl. Math. Lett., Volume 25 (2012) no. 3, pp. 344-351 (MR2855984)
[5] Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces (2015) (5 pp., MR3319198)
[6] Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Acta Univ. Apulensis, Mat.-Inform., Volume 40 (2014), pp. 347-354 (MR3316514)
[7] Initial coefficient bounds for a general class of biunivalent functions, Int. J. Anal. (2014) (4 pp., MR3198331)
[8] Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 6, pp. 479-484 (MR3210128)
[9] Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., Volume 2 (2013) no. 1, pp. 49-60 (MR3322242)
[10] Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983 (MR0708494)
[11] Über polynomische Entwickelungen, Math. Ann., Volume 57 (1903) no. 3, pp. 389-408 (MR1511216)
[12] New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011) no. 9, pp. 1569-1573 (MR2803711)
[13] Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 1, pp. 17-20 (MR3150761)
[14] Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc., Volume 41 (2015) no. 5, pp. 1103-1119
[15] On the coefficients of powers of a class of Bazilevic functions, Indian J. Pure Appl. Math., Volume 17 (1986) no. 9, pp. 1140-1144 (MR0864155)
[16] Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. (2013) (4 pp., MR3100751)
[17] Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Soc. (2), Volume 3 (2014), pp. 633-640 (MR3234504)
[18] Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math., Volume 23 (1970/1971), pp. 159-177 (MR0267103)
[19] Some extremal problems for certain families of analytic functions, I, Ann. Pol. Math., Volume 28 (1973), pp. 297-326 (MR0328059)
[20] Coefficient bounds for certain subclasses of bi-univalent functions, Int. Math. Forum, Volume 8 (2013), pp. 1337-1344 (MR3107010)
[21] Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010) no. 10, pp. 1188-1192 (MR2665593)
[22] Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, Volume 29 (2015) no. 8, pp. 1839-1845
[23] On the Fekete–Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, Volume 21 (2014) no. 1, pp. 169-178 (MR3178538)
Cité par Sources :
Commentaires - Politique