[Polynômes de Faber et coefficients des fonctions bi-subordonnées]
Une fonction est dite bi-univalente dans le disque unité ouvert
A function is said to be bi-univalent in the open unit disk
Accepté le :
Publié le :
Samaneh G. Hamidi 1 ; Jay M. Jahangiri 2
@article{CRMATH_2016__354_4_365_0, author = {Samaneh G. Hamidi and Jay M. Jahangiri}, title = {Faber polynomial coefficients of bi-subordinate functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {365--370}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2016.01.013}, language = {en}, }
Samaneh G. Hamidi; Jay M. Jahangiri. Faber polynomial coefficients of bi-subordinate functions. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 365-370. doi : 10.1016/j.crma.2016.01.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.013/
[1] Remarks on Faber polynomials, Int. Math. Forum, Volume 3 (2008) no. 9–12, pp. 449-456 (MR2386197)
[2] Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222 (MR2215663)
[3] An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367 MR1914725 (2004c:17048)
[4] Coefficient estimates for bi-univalent Ma–Minda starlike and convex functions, Appl. Math. Lett., Volume 25 (2012) no. 3, pp. 344-351 (MR2855984)
[5] Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces (2015) (5 pp., MR3319198)
[6] Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Acta Univ. Apulensis, Mat.-Inform., Volume 40 (2014), pp. 347-354 (MR3316514)
[7] Initial coefficient bounds for a general class of biunivalent functions, Int. J. Anal. (2014) (4 pp., MR3198331)
[8] Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 6, pp. 479-484 (MR3210128)
[9] Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., Volume 2 (2013) no. 1, pp. 49-60 (MR3322242)
[10] Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983 (MR0708494)
[11] Über polynomische Entwickelungen, Math. Ann., Volume 57 (1903) no. 3, pp. 389-408 (MR1511216)
[12] New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011) no. 9, pp. 1569-1573 (MR2803711)
[13] Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 1, pp. 17-20 (MR3150761)
[14] Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc., Volume 41 (2015) no. 5, pp. 1103-1119
[15] On the coefficients of powers of a class of Bazilevic functions, Indian J. Pure Appl. Math., Volume 17 (1986) no. 9, pp. 1140-1144 (MR0864155)
[16] Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. (2013) (4 pp., MR3100751)
[17] Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Soc. (2), Volume 3 (2014), pp. 633-640 (MR3234504)
[18] Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math., Volume 23 (1970/1971), pp. 159-177 (MR0267103)
[19] Some extremal problems for certain families of analytic functions, I, Ann. Pol. Math., Volume 28 (1973), pp. 297-326 (MR0328059)
[20] Coefficient bounds for certain subclasses of bi-univalent functions, Int. Math. Forum, Volume 8 (2013), pp. 1337-1344 (MR3107010)
[21] Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010) no. 10, pp. 1188-1192 (MR2665593)
[22] Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, Volume 29 (2015) no. 8, pp. 1839-1845
[23] On the Fekete–Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, Volume 21 (2014) no. 1, pp. 169-178 (MR3178538)
- Fractional Differential Operator Based on Quantum Calculus and Bi-Close-to-Convex Functions, Mathematics, Volume 12 (2024) no. 13, p. 2026 | DOI:10.3390/math12132026
- Certain new applications of Faber polynomial expansion for some new subclasses of
-fold symmetric bi-univalent functions associated with -calculus, AIMS Mathematics, Volume 8 (2023) no. 5, p. 10283 | DOI:10.3934/math.2023521 - Coefficient Bounds for Some Families of Bi-Univalent Functions with Missing Coefficients, Axioms, Volume 12 (2023) no. 12, p. 1071 | DOI:10.3390/axioms12121071
- Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative, Axioms, Volume 12 (2023) no. 6, p. 585 | DOI:10.3390/axioms12060585
- New Applications of Faber Polynomials and q-Fractional Calculus for a New Subclass of m-Fold Symmetric bi-Close-to-Convex Functions, Axioms, Volume 12 (2023) no. 6, p. 600 | DOI:10.3390/axioms12060600
- Faber Polynomial Coefficient Inequalities for a Subclass of Bi-Close-To-Convex Functions Associated with Fractional Differential Operator, Fractal and Fractional, Volume 7 (2023) no. 12, p. 883 | DOI:10.3390/fractalfract7120883
- Some New Applications of the Faber Polynomial Expansion Method for Generalized Bi-Subordinate Functions of Complex Order γ Defined by q-Calculus, Fractal and Fractional, Volume 7 (2023) no. 3, p. 270 | DOI:10.3390/fractalfract7030270
- New Applications of Faber Polynomial Expansion for Analytical Bi-Close-to-Convex Functions Defined by Using q-Calculus, Mathematics, Volume 11 (2023) no. 5, p. 1217 | DOI:10.3390/math11051217
- Certain New Applications of Faber Polynomial Expansion for a New Class of bi-Univalent Functions Associated with Symmetric q-Calculus, Symmetry, Volume 15 (2023) no. 7, p. 1407 | DOI:10.3390/sym15071407
- Faber polynomial coefficients estimates for certain subclasses of
-Mittag-Leffler-Type analytic and bi-univalent functions, AIMS Mathematics, Volume 7 (2022) no. 2, p. 2512 | DOI:10.3934/math.2022141 - Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial, AIMS Mathematics, Volume 7 (2022) no. 2, p. 2989 | DOI:10.3934/math.2022165
- Coefficient Estimates for Some Classes of Biunivalent Function Associated with Jackson q -Difference Operator, Journal of Function Spaces, Volume 2022 (2022), p. 1 | DOI:10.1155/2022/2365918
- Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions, Mathematics, Volume 10 (2022) no. 17, p. 3073 | DOI:10.3390/math10173073
- Coefficient bounds for certain two subclasses of bi-univalent functions, AIMS Mathematics, Volume 6 (2021) no. 9, p. 9126 | DOI:10.3934/math.2021530
- Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with
Calculus Operators, Fundamental Journal of Mathematics and Applications, Volume 4 (2021) no. 1, p. 17 | DOI:10.33401/fujma.831447 - Faber Polynomial Coefficient Bounds form-Fold Symmetric Analytic and Bi-univalent Functions Involvingq-Calculus, Journal of Function Spaces, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/5232247
- Bounds for Two New Subclasses of Bi-Univalent Functions Associated with Legendre Polynomials, Mathematics, Volume 9 (2021) no. 24, p. 3188 | DOI:10.3390/math9243188
- Coefficient Bounds for Certain Classes of Analytic Functions Associated with Faber Polynomial, Symmetry, Volume 13 (2021) no. 2, p. 302 | DOI:10.3390/sym13020302
- Second Hankel determinant with Fekete-Szegö parameter for some subclasses of bi-univalent functions using a symmetric q-derivative operator, Tbilisi Mathematical Journal, Volume 14 (2021) no. 3 | DOI:10.32513/tmj/19322008141
- CERTAIN CLASSES OF BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER ASSOCIATED WITH QUASI-SUBORDINATION INVOLVING (p, q) -DERIVATIVE OPERATOR, Kragujevac Journal of Mathematics, Volume 44 (2020) no. 4, p. 639 | DOI:10.46793/kgjmat2004.639a
- Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator, Mathematics, Volume 8 (2020) no. 2, p. 172 | DOI:10.3390/math8020172
- Coefficient bounds for subclasses of bi-univalent functions defined by fractional derivative operator, Tbilisi Mathematical Journal, Volume 13 (2020) no. 3 | DOI:10.32513/tbilisi/1601344894
- Simple criteria for univalence and coefficient bounds for a certain subclass of analytic functions, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics (2019), p. 394 | DOI:10.31801/cfsuasmas.596546
- Coefficient estimates for m-fold symmetric bi-subordinate functions, Hacettepe Journal of Mathematics and Statistics (2019), p. 1 | DOI:10.15672/hujms.545237
- Certain Subclasses of Bi-Univalent Functions Associated with the Horadam Polynomials, Iranian Journal of Science and Technology, Transactions A: Science, Volume 43 (2019) no. 4, p. 1873 | DOI:10.1007/s40995-018-0647-0
- Application of quasi-subordination for certain subclasses of bi-univalent functions of complex order, Malaya Journal of Matematik, Volume 07 (2019) no. 04, p. 681 | DOI:10.26637/mjm0704/0011
- A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers, Mathematics, Volume 7 (2019) no. 2, p. 160 | DOI:10.3390/math7020160
- Faber Polynomial Coefficient Estimates for Bi-univalent Functions Defined by the Tremblay Fractional Derivative Operator, Bulletin of the Iranian Mathematical Society, Volume 44 (2018) no. 1, p. 149 | DOI:10.1007/s41980-018-0011-3
- On a new subclass of bi-univalent functions satisfying subordinate conditions, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, Volume 68 (2018) no. 1, p. 724 | DOI:10.31801/cfsuasmas.464191
- Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate, Mathematica Slovaca, Volume 68 (2018) no. 2, p. 369 | DOI:10.1515/ms-2017-0108
- Coefficients Bounds for Certain Subclass of Biunivalent Functions Associated with Ruscheweyh q-Differential Operator, Journal of Complex Analysis, Volume 2017 (2017), p. 1 | DOI:10.1155/2017/2826514
- An Unified Approach to Second Hankel Determinant of Bi-Subordinate Functions, Mediterranean Journal of Mathematics, Volume 14 (2017) no. 6 | DOI:10.1007/s00009-017-1031-6
Cité par 32 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier