Comptes Rendus
Partial differential equations
A note on Sylvester's proof of discreteness of interior transmission eigenvalues
Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 377-382.

It has been shown by Sylvester (2011) [10] that the set of interior transmission eigenvalues forms a discrete set if the contrast does not change its sign in a neighborhood of the boundary. In this short note, we give a more elementary proof of this fact using the classical inf–sup conditions of Babuška–Brezzi.

Il a été démontré par Sylvester (2011) [10] que l'ensemble des valeurs propres intérieures de transmission constitue un ensemble discret si le contraste ne change pas de signe dans un voisinage du bord. Nous donnons une preuve plus élémentaire de ce fait en utilisant les conditions classiques « inf–sup » de Babuška–Brezzi.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.01.015

Andreas Kirsch 1

1 Karlsruhe Institute of Technology (KIT), Department of Mathematics, 76131 Karlsruhe, Germany
@article{CRMATH_2016__354_4_377_0,
     author = {Andreas Kirsch},
     title = {A note on {Sylvester's} proof of discreteness of interior transmission eigenvalues},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {377--382},
     publisher = {Elsevier},
     volume = {354},
     number = {4},
     year = {2016},
     doi = {10.1016/j.crma.2016.01.015},
     language = {en},
}
TY  - JOUR
AU  - Andreas Kirsch
TI  - A note on Sylvester's proof of discreteness of interior transmission eigenvalues
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 377
EP  - 382
VL  - 354
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2016.01.015
LA  - en
ID  - CRMATH_2016__354_4_377_0
ER  - 
%0 Journal Article
%A Andreas Kirsch
%T A note on Sylvester's proof of discreteness of interior transmission eigenvalues
%J Comptes Rendus. Mathématique
%D 2016
%P 377-382
%V 354
%N 4
%I Elsevier
%R 10.1016/j.crma.2016.01.015
%G en
%F CRMATH_2016__354_4_377_0
Andreas Kirsch. A note on Sylvester's proof of discreteness of interior transmission eigenvalues. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 377-382. doi : 10.1016/j.crma.2016.01.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.015/

[1] A.-S. Bonnet-Ben Dhia; L. Chesnel; H. Haddar On the use of T-coercivity to study the interior transmission eigenvalue problem, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2011), pp. 647-651

[2] F. Cakoni; H. Haddar (MSRI Publications), Volume vol. 60 (2012), pp. 527-578

[3] D. Colton; A. Kirsch; L. Päivärinta Far field patterns for acoustic waves in an inhomogeneous medium, SIAM J. Math. Anal., Volume 20 (1989), pp. 1472-1483

[4] D.L. Colton; R. Kress Inverse Acoustic and Electromagnetic Scattering Theory, Springer, 2013

[5] D. Colton; L. Päivärinta; J. Sylvester The interior transmission problem, Inverse Probl. Imaging, Volume 1 (2007), pp. 13-28

[6] E. Lakshtanov; B. Vainberg Elliptic in the interior transmission problem in anisotropic media, SIAM J. Math. Anal., Volume 44 (2012), pp. 1165-1174

[7] E. Lakshtanov; B. Vainberg Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem, Inverse Probl., Volume 29 (2013), p. 104003

[8] P. Monk Finite Element Methods for Maxwell's Equations, Oxford University Press, 2003

[9] L. Päivärinta; J. Sylvester Transmission eigenvalues, SIAM J. Math. Anal., Volume 40 (2008), pp. 738-753

[10] J. Sylvester Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., Volume 44 (2011) no. 1, pp. 341-354

Cited by Sources:

Comments - Policy