Comptes Rendus
Analytic geometry/Differential geometry
A remark on the convergence of the inverse σk-flow
[Une remarque sur la convergence du σk-flot inverse]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 395-399.

Nous étudions la positivité des classes de cohomologie liée au problème de la convergence du σk-flot inverse, suivant une conjecture proposée par Lejmi et Székelyhidi.

We study the positivity of cohomology classes related to the convergence problem of the inverse σk-flow, according to a conjecture proposed by Lejmi and Székelyhidi.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.01.016

Jian Xiao 1

1 Institute of Mathematics, Fudan University, 200433 Shanghai, China
@article{CRMATH_2016__354_4_395_0,
     author = {Jian Xiao},
     title = {A remark on the convergence of the inverse \protect\emph{\ensuremath{\sigma}}\protect\textsubscript{\protect\emph{k}}-flow},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {395--399},
     publisher = {Elsevier},
     volume = {354},
     number = {4},
     year = {2016},
     doi = {10.1016/j.crma.2016.01.016},
     language = {en},
}
TY  - JOUR
AU  - Jian Xiao
TI  - A remark on the convergence of the inverse σk-flow
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 395
EP  - 399
VL  - 354
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2016.01.016
LA  - en
ID  - CRMATH_2016__354_4_395_0
ER  - 
%0 Journal Article
%A Jian Xiao
%T A remark on the convergence of the inverse σk-flow
%J Comptes Rendus. Mathématique
%D 2016
%P 395-399
%V 354
%N 4
%I Elsevier
%R 10.1016/j.crma.2016.01.016
%G en
%F CRMATH_2016__354_4_395_0
Jian Xiao. A remark on the convergence of the inverse σk-flow. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 395-399. doi : 10.1016/j.crma.2016.01.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.016/

[1] S. Boucksom; J.-P. Demailly; M. Păun; T. Peternell The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., Volume 22 (2013) no. 2, pp. 201-248 (MR 3019449)

[2] S. Boucksom Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Super. (4), Volume 37 (2004) no. 1, pp. 45-76 MR 2050205 (2005i:32018)

[3] X. Chen On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Not. (2000) no. 12, pp. 607-623 MR 1772078 (2001f:32042)

[4] X. Chen A new parabolic flow in Kähler manifolds, Commun. Anal. Geom., Volume 12 (2004) no. 4, pp. 837-852 MR 2104078 (2005h:53116)

[5] T.C. Collins; G. Székelyhidi Convergence of the j-flow on toric manifolds, 2014 (preprint) | arXiv

[6] T.C. Collins; V. Tosatti Kähler currents and null loci, 2013 (preprint) | arXiv

[7] J.-P. Demailly Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992) no. 3, pp. 361-409 MR 1158622 (93e:32015)

[8] J.-P. Demailly; M. Păun Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2), Volume 159 (2004) no. 3, pp. 1247-1274 MR 2113021 (2005i:32020)

[9] S.K. Donaldson Moment maps and diffeomorphisms, Asian J. Math., Volume 3 (1999) no. 1, pp. 1-15 Sir Michael Atiyah: a great mathematician of the twentieth century, MR 1701920 (2001a:53122)

[10] H. Fang; M. Lai; X. Ma On a class of fully nonlinear flows in Kähler geometry, J. Reine Angew. Math., Volume 653 (2011), pp. 189-220 MR 2794631 (2012g:53134)

[11] A. Lamari Courants kählériens et surfaces compactes, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 1 vii, x, 263–285, MR 1688140 (2000d:32034)

[12] M. Lejmi; G. Székelyhidi The J-flow and stability, Adv. Math., Volume 274 (2015), pp. 404-431 (MR 3318155)

[13] M. Păun Fibré en droites numériquement effectifs et variétés kählériennes compactes à courbure de Ricci nef, Université Joseph-Fourier–Grenoble-1, 1998 (Ph.D. thesis)

[14] M. Păun Sur l'effectivité numérique des images inverses de fibrés en droites, Math. Ann., Volume 310 (1998) no. 3, pp. 411-421

[15] Dan Popovici Sufficient bigness criterion for differences of two nef classes, Math. Ann., Volume 364 (2016) no. 1, pp. 649-655

[16] Dan Popovici Volume and self-intersection of differences of two nef classes, 2015 (preprint) | arXiv

[17] J. Song; B. Weinkove On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Commun. Pure Appl. Math., Volume 61 (2008) no. 2, pp. 210-229 MR 2368374 (2009a:32038)

[18] J. Xiao Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds, Ann. Inst. Fourier (Grenoble) (2013) (preprint in press) | arXiv

[19] J. Xiao Movable intersection and bigness criterion, 2014 (preprint) | arXiv

[20] J. Xiao Characterizing volume via cone duality, 2015 (preprint) | arXiv

Cité par Sources :

Commentaires - Politique