[Une remarque sur la convergence du σk-flot inverse]
Nous étudions la positivité des classes de cohomologie liée au problème de la convergence du -flot inverse, suivant une conjecture proposée par Lejmi et Székelyhidi.
We study the positivity of cohomology classes related to the convergence problem of the inverse -flow, according to a conjecture proposed by Lejmi and Székelyhidi.
Accepté le :
Publié le :
Jian Xiao 1
@article{CRMATH_2016__354_4_395_0, author = {Jian Xiao}, title = {A remark on the convergence of the inverse \protect\emph{\ensuremath{\sigma}}\protect\textsubscript{\protect\emph{k}}-flow}, journal = {Comptes Rendus. Math\'ematique}, pages = {395--399}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2016.01.016}, language = {en}, }
Jian Xiao. A remark on the convergence of the inverse σk-flow. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 395-399. doi : 10.1016/j.crma.2016.01.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.016/
[1] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., Volume 22 (2013) no. 2, pp. 201-248 (MR 3019449)
[2] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Super. (4), Volume 37 (2004) no. 1, pp. 45-76 MR 2050205 (2005i:32018)
[3] On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Not. (2000) no. 12, pp. 607-623 MR 1772078 (2001f:32042)
[4] A new parabolic flow in Kähler manifolds, Commun. Anal. Geom., Volume 12 (2004) no. 4, pp. 837-852 MR 2104078 (2005h:53116)
[5] Convergence of the j-flow on toric manifolds, 2014 (preprint) | arXiv
[6] Kähler currents and null loci, 2013 (preprint) | arXiv
[7] Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992) no. 3, pp. 361-409 MR 1158622 (93e:32015)
[8] Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2), Volume 159 (2004) no. 3, pp. 1247-1274 MR 2113021 (2005i:32020)
[9] Moment maps and diffeomorphisms, Asian J. Math., Volume 3 (1999) no. 1, pp. 1-15 Sir Michael Atiyah: a great mathematician of the twentieth century, MR 1701920 (2001a:53122)
[10] On a class of fully nonlinear flows in Kähler geometry, J. Reine Angew. Math., Volume 653 (2011), pp. 189-220 MR 2794631 (2012g:53134)
[11] Courants kählériens et surfaces compactes, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 1 vii, x, 263–285, MR 1688140 (2000d:32034)
[12] The J-flow and stability, Adv. Math., Volume 274 (2015), pp. 404-431 (MR 3318155)
[13] Fibré en droites numériquement effectifs et variétés kählériennes compactes à courbure de Ricci nef, Université Joseph-Fourier–Grenoble-1, 1998 (Ph.D. thesis)
[14] Sur l'effectivité numérique des images inverses de fibrés en droites, Math. Ann., Volume 310 (1998) no. 3, pp. 411-421
[15] Sufficient bigness criterion for differences of two nef classes, Math. Ann., Volume 364 (2016) no. 1, pp. 649-655
[16] Volume and self-intersection of differences of two nef classes, 2015 (preprint) | arXiv
[17] On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Commun. Pure Appl. Math., Volume 61 (2008) no. 2, pp. 210-229 MR 2368374 (2009a:32038)
[18] Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds, Ann. Inst. Fourier (Grenoble) (2013) (preprint in press) | arXiv
[19] Movable intersection and bigness criterion, 2014 (preprint) | arXiv
[20] Characterizing volume via cone duality, 2015 (preprint) | arXiv
Cité par Sources :
Commentaires - Politique