[Une remarque sur la convergence du σk-flot inverse]
Nous étudions la positivité des classes de cohomologie liée au problème de la convergence du
We study the positivity of cohomology classes related to the convergence problem of the inverse
Accepté le :
Publié le :
Jian Xiao 1
@article{CRMATH_2016__354_4_395_0, author = {Jian Xiao}, title = {A remark on the convergence of the inverse \protect\emph{\ensuremath{\sigma}}\protect\textsubscript{\protect\emph{k}}-flow}, journal = {Comptes Rendus. Math\'ematique}, pages = {395--399}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2016.01.016}, language = {en}, }
Jian Xiao. A remark on the convergence of the inverse σk-flow. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 395-399. doi : 10.1016/j.crma.2016.01.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.016/
[1] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., Volume 22 (2013) no. 2, pp. 201-248 (MR 3019449)
[2] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Super. (4), Volume 37 (2004) no. 1, pp. 45-76 MR 2050205 (2005i:32018)
[3] On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Not. (2000) no. 12, pp. 607-623 MR 1772078 (2001f:32042)
[4] A new parabolic flow in Kähler manifolds, Commun. Anal. Geom., Volume 12 (2004) no. 4, pp. 837-852 MR 2104078 (2005h:53116)
[5] Convergence of the j-flow on toric manifolds, 2014 (preprint) | arXiv
[6] Kähler currents and null loci, 2013 (preprint) | arXiv
[7] Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992) no. 3, pp. 361-409 MR 1158622 (93e:32015)
[8] Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2), Volume 159 (2004) no. 3, pp. 1247-1274 MR 2113021 (2005i:32020)
[9] Moment maps and diffeomorphisms, Asian J. Math., Volume 3 (1999) no. 1, pp. 1-15 Sir Michael Atiyah: a great mathematician of the twentieth century, MR 1701920 (2001a:53122)
[10] On a class of fully nonlinear flows in Kähler geometry, J. Reine Angew. Math., Volume 653 (2011), pp. 189-220 MR 2794631 (2012g:53134)
[11] Courants kählériens et surfaces compactes, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 1 vii, x, 263–285, MR 1688140 (2000d:32034)
[12] The J-flow and stability, Adv. Math., Volume 274 (2015), pp. 404-431 (MR 3318155)
[13] Fibré en droites numériquement effectifs et variétés kählériennes compactes à courbure de Ricci nef, Université Joseph-Fourier–Grenoble-1, 1998 (Ph.D. thesis)
[14] Sur l'effectivité numérique des images inverses de fibrés en droites, Math. Ann., Volume 310 (1998) no. 3, pp. 411-421
[15] Sufficient bigness criterion for differences of two nef classes, Math. Ann., Volume 364 (2016) no. 1, pp. 649-655
[16] Volume and self-intersection of differences of two nef classes, 2015 (preprint) | arXiv
[17] On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Commun. Pure Appl. Math., Volume 61 (2008) no. 2, pp. 210-229 MR 2368374 (2009a:32038)
[18] Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds, Ann. Inst. Fourier (Grenoble) (2013) (preprint in press) | arXiv
[19] Movable intersection and bigness criterion, 2014 (preprint) | arXiv
[20] Characterizing volume via cone duality, 2015 (preprint) | arXiv
Cité par Sources :
Commentaires - Politique