[Une nouvelle méthode de type domaine fictif : convergence optimale sans éléments coupés]
Nous présentons une méthode de type domaine fictif pour le problème de Poisson–Dirichlet. Le maillage de calcul est construit à partir d'un maillage ambiant (typiquement uniforme cartésien) en rejetant les éléments en dehors du domaine dans lequel le problème est posé. Le maillage ainsi obtenu n'est pas ajusté à la frontière du domaine du problème. Plusieurs méthodes d'éléments finis (XFEM, CutFEM) adaptées à ce type de maillages ont été proposées récemment. L'originalité de la méthode que l'on propose ici réside dans le fait que l'on évite l'intégration sur les éléments coupés par la frontière du domaine du problème, tout en préservant le taux de convergence optimal. Cette observation est confirmée par une étude théorique et par des essais numériques.
We present a method of the fictitious domain type for the Poisson–Dirichlet problem. The computational mesh is obtained from a background (typically uniform Cartesian) mesh by retaining only the elements intersecting the domain where the problem is posed. The resulting mesh does not thus fit the boundary of the problem domain. Several finite element methods (XFEM, CutFEM) adapted to such meshes have been recently proposed. The originality of the present article consists in avoiding integration over the elements cut by the boundary of the problem domain, while preserving the optimal convergence rates, as confirmed by both the theoretical estimates and the numerical results.
Accepté le :
Publié le :
Alexei Lozinski 1
@article{CRMATH_2016__354_7_741_0, author = {Alexei Lozinski}, title = {A new fictitious domain method: {Optimal} convergence without cut elements}, journal = {Comptes Rendus. Math\'ematique}, pages = {741--746}, publisher = {Elsevier}, volume = {354}, number = {7}, year = {2016}, doi = {10.1016/j.crma.2016.02.002}, language = {en}, }
Alexei Lozinski. A new fictitious domain method: Optimal convergence without cut elements. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 741-746. doi : 10.1016/j.crma.2016.02.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.02.002/
[1] Ghost penalty, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 21, pp. 1217-1220
[2] Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 41, pp. 2680-2686
[3] Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math., Volume 62 (2012) no. 4, pp. 328-341
[4] A smooth extension method, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 9, pp. 361-366
[5] A new fictitious domain approach inspired by the extended finite element method, SIAM J. Numer. Anal., Volume 47 (2009) no. 2, pp. 1474-1499
[6] New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3–4, pp. 251-265
- The Shifted Boundary Method for contact problems, Computer Methods in Applied Mechanics and Engineering, Volume 440 (2025), p. 117940 | DOI:10.1016/j.cma.2025.117940
- Complex-geometry simulations of transient thermoelasticity with the Shifted Boundary Method, Computer Methods in Applied Mechanics and Engineering, Volume 418 (2024), p. 116461 | DOI:10.1016/j.cma.2023.116461
- A shifted boundary method based on extension operators, Computer Methods in Applied Mechanics and Engineering, Volume 421 (2024), p. 116782 | DOI:10.1016/j.cma.2024.116782
- A weighted shifted boundary method for immersed moving boundary simulations of Stokes' flow, Journal of Computational Physics, Volume 510 (2024), p. 113095 | DOI:10.1016/j.jcp.2024.113095
- A penalty-free Shifted Boundary Method of arbitrary order, Computer Methods in Applied Mechanics and Engineering, Volume 417 (2023), p. 116301 | DOI:10.1016/j.cma.2023.116301
- A weighted Shifted Boundary Method for free surface flow problems, Journal of Computational Physics, Volume 424 (2021), p. 109837 | DOI:10.1016/j.jcp.2020.109837
- Analysis of the shifted boundary method for the Stokes problem, Computer Methods in Applied Mechanics and Engineering, Volume 358 (2020), p. 112609 | DOI:10.1016/j.cma.2019.112609
- The second-generation Shifted Boundary Method and its numerical analysis, Computer Methods in Applied Mechanics and Engineering, Volume 372 (2020), p. 113341 | DOI:10.1016/j.cma.2020.113341
- The Shifted Interface Method: A flexible approach to embedded interface computations, International Journal for Numerical Methods in Engineering, Volume 121 (2020) no. 3, p. 492 | DOI:10.1002/nme.6231
- CutFEM without cutting the mesh cells: A new way to impose Dirichlet and Neumann boundary conditions on unfitted meshes, Computer Methods in Applied Mechanics and Engineering, Volume 356 (2019), p. 75 | DOI:10.1016/j.cma.2019.07.008
Cité par 10 documents. Sources : Crossref
Commentaires - Politique