Comptes Rendus
Numerical analysis
A new fictitious domain method: Optimal convergence without cut elements
[Une nouvelle méthode de type domaine fictif : convergence optimale sans éléments coupés]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 741-746.

Nous présentons une méthode de type domaine fictif pour le problème de Poisson–Dirichlet. Le maillage de calcul est construit à partir d'un maillage ambiant (typiquement uniforme cartésien) en rejetant les éléments en dehors du domaine dans lequel le problème est posé. Le maillage ainsi obtenu n'est pas ajusté à la frontière du domaine du problème. Plusieurs méthodes d'éléments finis (XFEM, CutFEM) adaptées à ce type de maillages ont été proposées récemment. L'originalité de la méthode que l'on propose ici réside dans le fait que l'on évite l'intégration sur les éléments coupés par la frontière du domaine du problème, tout en préservant le taux de convergence optimal. Cette observation est confirmée par une étude théorique et par des essais numériques.

We present a method of the fictitious domain type for the Poisson–Dirichlet problem. The computational mesh is obtained from a background (typically uniform Cartesian) mesh by retaining only the elements intersecting the domain where the problem is posed. The resulting mesh does not thus fit the boundary of the problem domain. Several finite element methods (XFEM, CutFEM) adapted to such meshes have been recently proposed. The originality of the present article consists in avoiding integration over the elements cut by the boundary of the problem domain, while preserving the optimal convergence rates, as confirmed by both the theoretical estimates and the numerical results.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.02.002

Alexei Lozinski 1

1 Laboratoire de mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, 16, route de Gray, 25030 Besançon cedex, France
@article{CRMATH_2016__354_7_741_0,
     author = {Alexei Lozinski},
     title = {A new fictitious domain method: {Optimal} convergence without cut elements},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {741--746},
     publisher = {Elsevier},
     volume = {354},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crma.2016.02.002},
     language = {en},
}
TY  - JOUR
AU  - Alexei Lozinski
TI  - A new fictitious domain method: Optimal convergence without cut elements
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 741
EP  - 746
VL  - 354
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2016.02.002
LA  - en
ID  - CRMATH_2016__354_7_741_0
ER  - 
%0 Journal Article
%A Alexei Lozinski
%T A new fictitious domain method: Optimal convergence without cut elements
%J Comptes Rendus. Mathématique
%D 2016
%P 741-746
%V 354
%N 7
%I Elsevier
%R 10.1016/j.crma.2016.02.002
%G en
%F CRMATH_2016__354_7_741_0
Alexei Lozinski. A new fictitious domain method: Optimal convergence without cut elements. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 741-746. doi : 10.1016/j.crma.2016.02.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.02.002/

[1] E. Burman Ghost penalty, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 21, pp. 1217-1220

[2] E. Burman; P. Hansbo Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 41, pp. 2680-2686

[3] E. Burman; P. Hansbo Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math., Volume 62 (2012) no. 4, pp. 328-341

[4] B. Fabrèges; L. Gouarin; B. Maury A smooth extension method, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 9, pp. 361-366

[5] J. Haslinger; Y. Renard A new fictitious domain approach inspired by the extended finite element method, SIAM J. Numer. Anal., Volume 47 (2009) no. 2, pp. 1474-1499

[6] F. Hecht New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3–4, pp. 251-265

  • Kangan Li; Andrea Gorgi; Riccardo Rossi; Guglielmo Scovazzi The Shifted Boundary Method for contact problems, Computer Methods in Applied Mechanics and Engineering, Volume 440 (2025), p. 117940 | DOI:10.1016/j.cma.2025.117940
  • Kangan Li; John G. Michopoulos; Athanasios Iliopoulos; John C. Steuben; Guglielmo Scovazzi Complex-geometry simulations of transient thermoelasticity with the Shifted Boundary Method, Computer Methods in Applied Mechanics and Engineering, Volume 418 (2024), p. 116461 | DOI:10.1016/j.cma.2023.116461
  • Rubén Zorrilla; Riccardo Rossi; Guglielmo Scovazzi; Claudio Canuto; Antonio Rodríguez-Ferran A shifted boundary method based on extension operators, Computer Methods in Applied Mechanics and Engineering, Volume 421 (2024), p. 116782 | DOI:10.1016/j.cma.2024.116782
  • Danjie Xu; Oriol Colomés; Alex Main; Kangan Li; Nabil M. Atallah; Nabil Abboud; Guglielmo Scovazzi A weighted shifted boundary method for immersed moving boundary simulations of Stokes' flow, Journal of Computational Physics, Volume 510 (2024), p. 113095 | DOI:10.1016/j.jcp.2024.113095
  • J. Haydel Collins; Alexei Lozinski; Guglielmo Scovazzi A penalty-free Shifted Boundary Method of arbitrary order, Computer Methods in Applied Mechanics and Engineering, Volume 417 (2023), p. 116301 | DOI:10.1016/j.cma.2023.116301
  • Oriol Colomés; Alex Main; Léo Nouveau; Guglielmo Scovazzi A weighted Shifted Boundary Method for free surface flow problems, Journal of Computational Physics, Volume 424 (2021), p. 109837 | DOI:10.1016/j.jcp.2020.109837
  • Nabil M. Atallah; Claudio Canuto; Guglielmo Scovazzi Analysis of the shifted boundary method for the Stokes problem, Computer Methods in Applied Mechanics and Engineering, Volume 358 (2020), p. 112609 | DOI:10.1016/j.cma.2019.112609
  • Nabil M. Atallah; Claudio Canuto; Guglielmo Scovazzi The second-generation Shifted Boundary Method and its numerical analysis, Computer Methods in Applied Mechanics and Engineering, Volume 372 (2020), p. 113341 | DOI:10.1016/j.cma.2020.113341
  • Kangan Li; Nabil M. Atallah; G. Alex Main; Guglielmo Scovazzi The Shifted Interface Method: A flexible approach to embedded interface computations, International Journal for Numerical Methods in Engineering, Volume 121 (2020) no. 3, p. 492 | DOI:10.1002/nme.6231
  • Alexei Lozinski CutFEM without cutting the mesh cells: A new way to impose Dirichlet and Neumann boundary conditions on unfitted meshes, Computer Methods in Applied Mechanics and Engineering, Volume 356 (2019), p. 75 | DOI:10.1016/j.cma.2019.07.008

Cité par 10 documents. Sources : Crossref

Commentaires - Politique