We are interested in 3-D magnetic Pauli operators perturbed by a Hermitian matrix-valued potential , . We extend to the Pauli case the Breit–Wigner-type approximation and trace formula results obtained for the 3-D Schrödinger operator near the Landau levels. Hence, we give a link between the resonances and the spectral shift function near the low ground energy of the operators.
On s'intéresse à des opérateurs magnétiques 3-D de Pauli perturbés par un potentiel matriciel hermitien , . Nous étendons au cas Pauli des résultats d'approximation de type Breit–Wigner et de formule trace obtenus pour l'opérateur de Schrödinger 3-D près des niveaux de Landau. Ainsi, nous établissons un lien entre les résonances et la fonction de décalage spectrale près du bas niveau d'énergie des opérateurs.
Accepted:
Published online:
Diomba Sambou 1
@article{CRMATH_2016__354_6_606_0, author = {Diomba Sambou}, title = {Spectral analysis near the low ground energy of magnetic {Pauli} operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {606--610}, publisher = {Elsevier}, volume = {354}, number = {6}, year = {2016}, doi = {10.1016/j.crma.2016.02.007}, language = {en}, }
Diomba Sambou. Spectral analysis near the low ground energy of magnetic Pauli operators. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 606-610. doi : 10.1016/j.crma.2016.02.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.02.007/
[1] On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, Volume 144 (1962), pp. 475-478 (in Russian); English translation in Sov. Math. Dokl., 3, 1962
[2] Resonances and spectral shift function near the Landau levels, Ann. Inst. Fourier, Volume 57 (2007) no. 2, pp. 629-671
[3] Spectral distributions for long range perturbations, J. Funct. Anal., Volume 212 (2004), pp. 431-471
[4] Spectral Asymptotics in the Semi-classical Limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press, Cambridge, UK, 1999
[5] Trace formula for non trace-class perturbations, Sib. Mat. Zh., Volume 35 (1984), pp. 62-71 (in Russian); English transl. in Sib. Math. J., 25, 1984, pp. 735-743
[6] On the trace formula in perturbation theory, Mat. Sb., Volume 33 (1953), pp. 597-626 (in Russian)
[7] On a problem in perturbation theory, Usp. Mat. Nauk, Volume 7 (1952), pp. 171-180 (in Russian)
[8] Low energy asymptotics of the spectral shift function for Pauli operators with nonconstant magnetic fields, Publ. Res. Inst. Math. Sci., Volume 46 (2010), pp. 565-590
[9] Résonances près de seuils d'opérateurs magnétiques de Pauli et de Dirac, Can. J. Math., Volume 65 (2013) no. 5, pp. 1095-1124
[10] A trace formula and review of some estimates for resonances, Microlocal Analysis and Spectral Theory, NATO ASI Series C, vol. 490, Kluwer, 1997, pp. 377-437
[11] Resonances for the bottles and trace formulae, Math. Nachr., Volume 221 (2001), pp. 95-149
[12] Mathematical Scattering Theory. General Theory, Translations of Mathematical Monographs, vol. 105, AMS, Providence, RI, USA, 1992
Cited by Sources:
☆ This research is partially supported by the Chilean Program Núcleo Milenio de Física Matemática RC120002. The author wishes to express his gratitude to V. Bruneau for suggesting the study of this problem, and thank the anonymous referee for helpful remarks.
Comments - Politique