We prove a Bourgain–Brézis–Mironescu-type formula for a class of nonlocal magnetic spaces, which builds a bridge between a fractional magnetic operator recently introduced and the classical theory.
On démontre une formule du type Bourgain–Brézis–Mironescu pour une classe d'espaces magnétiques non locaux, qui jette un pont entre un opérateur magnétique fractionnaire récemment introduit et la théorie classique.
Accepted:
Published online:
Marco Squassina 1; Bruno Volzone 2
@article{CRMATH_2016__354_8_825_0, author = {Marco Squassina and Bruno Volzone}, title = {Bourgain{\textendash}Br\'ezis{\textendash}Mironescu formula for magnetic operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {825--831}, publisher = {Elsevier}, volume = {354}, number = {8}, year = {2016}, doi = {10.1016/j.crma.2016.04.013}, language = {en}, }
Marco Squassina; Bruno Volzone. Bourgain–Brézis–Mironescu formula for magnetic operators. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 825-831. doi : 10.1016/j.crma.2016.04.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.013/
[1] A semilinear Schrödinger equation in the presence of a magnetic field, Arch. Ration. Mech. Anal., Volume 170 (2003), pp. 277-295
[2] Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., Volume 45 (1978), pp. 847-883
[3] Another look at Sobolev spaces (J.L. Menaldi; E. Rofman; A. Sulem, eds.), Optimal Control and Partial Differential Equations. A Volume in Honor of Professor Alain Bensoussan's 60th Birthday, IOS Press, Amsterdam, 2001, pp. 439-455
[4] Limiting embedding theorems for when and applications, J. Anal. Math., Volume 87 (2002), pp. 77-101
[5] Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst., Ser. A, Volume 36 (2016), pp. 1813-1845
[6] Ground states for fractional magnetic operators | arXiv
[7] Partial Differential Equations, Graduate Series in Mathematics, American Mathematical Society, 2010
[8] Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., Volume 21 (2008), pp. 925-950
[9] Magnetic relativistic Schrödinger operators and imaginary-time path integrals, Mathematical Physics, Spectral Theory and Stochastic Analysis, Operator Theory: Advances and Applications, vol. 232, Birkhäuser/Springer, Basel, Switzerland, 2013, pp. 247-297
[10] On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002), pp. 230-238
[11] Methods of Modern Mathematical Physics, I, Functional Analysis, Academic Press, Inc., New York, 1980
Cited by Sources:
Comments - Policy