Comptes Rendus
Partial differential equations/Functional analysis
Bourgain–Brézis–Mironescu formula for magnetic operators
Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 825-831.

We prove a Bourgain–Brézis–Mironescu-type formula for a class of nonlocal magnetic spaces, which builds a bridge between a fractional magnetic operator recently introduced and the classical theory.

On démontre une formule du type Bourgain–Brézis–Mironescu pour une classe d'espaces magnétiques non locaux, qui jette un pont entre un opérateur magnétique fractionnaire récemment introduit et la théorie classique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.04.013

Marco Squassina 1; Bruno Volzone 2

1 Dipartimento di Informatica, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
2 Dipartimento di Ingegneria, Università di Napoli Parthenope, Centro Direzionale Isola C/4, 80143 Napoli, Italy
@article{CRMATH_2016__354_8_825_0,
     author = {Marco Squassina and Bruno Volzone},
     title = {Bourgain{\textendash}Br\'ezis{\textendash}Mironescu formula for magnetic operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {825--831},
     publisher = {Elsevier},
     volume = {354},
     number = {8},
     year = {2016},
     doi = {10.1016/j.crma.2016.04.013},
     language = {en},
}
TY  - JOUR
AU  - Marco Squassina
AU  - Bruno Volzone
TI  - Bourgain–Brézis–Mironescu formula for magnetic operators
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 825
EP  - 831
VL  - 354
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2016.04.013
LA  - en
ID  - CRMATH_2016__354_8_825_0
ER  - 
%0 Journal Article
%A Marco Squassina
%A Bruno Volzone
%T Bourgain–Brézis–Mironescu formula for magnetic operators
%J Comptes Rendus. Mathématique
%D 2016
%P 825-831
%V 354
%N 8
%I Elsevier
%R 10.1016/j.crma.2016.04.013
%G en
%F CRMATH_2016__354_8_825_0
Marco Squassina; Bruno Volzone. Bourgain–Brézis–Mironescu formula for magnetic operators. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 825-831. doi : 10.1016/j.crma.2016.04.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.013/

[1] G. Arioli; A. Szulkin A semilinear Schrödinger equation in the presence of a magnetic field, Arch. Ration. Mech. Anal., Volume 170 (2003), pp. 277-295

[2] J. Avron; I. Herbst; B. Simon Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., Volume 45 (1978), pp. 847-883

[3] J. Bourgain; H. Brezis; P. Mironescu Another look at Sobolev spaces (J.L. Menaldi; E. Rofman; A. Sulem, eds.), Optimal Control and Partial Differential Equations. A Volume in Honor of Professor Alain Bensoussan's 60th Birthday, IOS Press, Amsterdam, 2001, pp. 439-455

[4] J. Bourgain; H. Brezis; P. Mironescu Limiting embedding theorems for Ws,p when s1 and applications, J. Anal. Math., Volume 87 (2002), pp. 77-101

[5] L. Brasco; E. Parini; M. Squassina Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst., Ser. A, Volume 36 (2016), pp. 1813-1845

[6] P. d'Avenia; M. Squassina Ground states for fractional magnetic operators | arXiv

[7] L.C. Evans Partial Differential Equations, Graduate Series in Mathematics, American Mathematical Society, 2010

[8] R.L. Frank; E.H. Lieb; R. Seiringer Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., Volume 21 (2008), pp. 925-950

[9] T. Ichinose Magnetic relativistic Schrödinger operators and imaginary-time path integrals, Mathematical Physics, Spectral Theory and Stochastic Analysis, Operator Theory: Advances and Applications, vol. 232, Birkhäuser/Springer, Basel, Switzerland, 2013, pp. 247-297

[10] V. Maz'ya; T. Shaposhnikova On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002), pp. 230-238

[11] M. Reed; B. Simon Methods of Modern Mathematical Physics, I, Functional Analysis, Academic Press, Inc., New York, 1980

Cited by Sources:

Comments - Policy