This paper is devoted to the study of a semilinear problem describing the downward displacement of a suspension bridge in the presence of a hanger restoring force , an external force f which includes gravity, and a delay term which accounts for its history. The goal is to establish a well-posedness result and the existence of a finite-dimensional global attractor.
Cet article est consacré à l'étude d'un problème semi-linéaire décrivant le déplacement vers le bas d'un pont suspendu, en présence d'une force de rappel exercée par les câbles, une force extérieure qui tient compte de la gravité et un terme de retard qui représente l'historique.
Le but est d'établir un résultat bien posé et l'existence d'un attracteur global de dimension finie.
Accepted:
Published online:
Salim A. Messaoudi 1; Soh E. Mukiawa 1; Enyi D. Cyril 1
@article{CRMATH_2016__354_8_808_0, author = {Salim A. Messaoudi and Soh E. Mukiawa and Enyi D. Cyril}, title = {Finite dimensional global attractor for a suspension bridge problem with delay}, journal = {Comptes Rendus. Math\'ematique}, pages = {808--824}, publisher = {Elsevier}, volume = {354}, number = {8}, year = {2016}, doi = {10.1016/j.crma.2016.05.014}, language = {en}, }
TY - JOUR AU - Salim A. Messaoudi AU - Soh E. Mukiawa AU - Enyi D. Cyril TI - Finite dimensional global attractor for a suspension bridge problem with delay JO - Comptes Rendus. Mathématique PY - 2016 SP - 808 EP - 824 VL - 354 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2016.05.014 LA - en ID - CRMATH_2016__354_8_808_0 ER -
Salim A. Messaoudi; Soh E. Mukiawa; Enyi D. Cyril. Finite dimensional global attractor for a suspension bridge problem with delay. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 808-824. doi : 10.1016/j.crma.2016.05.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.014/
[1] Bending and stretching energies in a rectangular plate modeling suspension bridges, Nonlinear Anal., Volume 106 (2014), pp. 18-34
[2] Structural instability of nonlinear plates modelling suspension bridges: mathematical answers to some long-standing questions, Nonlinear Anal., Real World Appl., Volume 28 (2016), pp. 91-125
[3] Long-Time Behaviour of Second Order Evolution Equations with Nonlinear Damping 195, vol. 12, Memoirs of the American Mathematical Society, Providence, RI, USA, 2008
[4] Von Karman Evolution Equations, Springer Verlag, 2012
[5] A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5879-5908
[6] Mathematical Models for Suspension Bridges: Nonlinear Structural Instability, Modeling, Simulation and Applications, vol. 15, Springer Verlag, 2015
[7] Modeling suspension bridges through the Von Karman quasilinear plate equations (A.N. Carvalho; B. Ruf; E. Moreira dos Santos; J.-P. Gossez; S.H.M. Soares; T. Cazenave, eds.), Progress in Nonlinear Differential Equations and Their Applications, Contributions to Nonlinear Differential Equations and Systems, a Tribute to Djairo Guedes de Figueiredo on occasion of his 80th birthday, Birhäuser, 2015, pp. 269-297
[8] Extraits des recherches sur la flexion des plans élastiques, Bull. Sci. Soc. Philom. Paris (1823), pp. 92-102
[9] Stability and instability results of wave equation with a delay term in the boundary or internal feedback, SIAM J. Control Optim., Volume 45 (2006) no. 5, pp. 1561-1590
[10] Stabilization of wave equation with boundary or internal distributed delay, Differ. Integral Equ., Volume 21 (2008) no. 9–10, pp. 935-958
[11] Exponential stability of the wave equation with boundary time-varying delay, Discrete Contin. Dyn. Syst., Volume 4 (2011) no. 3, pp. 693-722
[12] Semigroups of Linear Operators and Application to PDE, Applied Mathematical Sciences, vol. 44, Springer, 1983
[13] Finite time blow-up and global solutions for fourth order damped wave equations, J. Math. Anal. Appl., Volume 418 (2014) no. 2, pp. 713-733
Cited by Sources:
Comments - Policy