[Attracteur global de dimension finie pour un problème de pont suspendu avec retard]
Cet article est consacré à l'étude d'un problème semi-linéaire décrivant le déplacement vers le bas d'un pont suspendu, en présence d'une force de rappel exercée par les câbles, une force extérieure qui tient compte de la gravité et un terme de retard qui représente l'historique.
Le but est d'établir un résultat bien posé et l'existence d'un attracteur global de dimension finie.
This paper is devoted to the study of a semilinear problem describing the downward displacement of a suspension bridge in the presence of a hanger restoring force
Accepté le :
Publié le :
Salim A. Messaoudi 1 ; Soh E. Mukiawa 1 ; Enyi D. Cyril 1
@article{CRMATH_2016__354_8_808_0, author = {Salim A. Messaoudi and Soh E. Mukiawa and Enyi D. Cyril}, title = {Finite dimensional global attractor for a suspension bridge problem with delay}, journal = {Comptes Rendus. Math\'ematique}, pages = {808--824}, publisher = {Elsevier}, volume = {354}, number = {8}, year = {2016}, doi = {10.1016/j.crma.2016.05.014}, language = {en}, }
TY - JOUR AU - Salim A. Messaoudi AU - Soh E. Mukiawa AU - Enyi D. Cyril TI - Finite dimensional global attractor for a suspension bridge problem with delay JO - Comptes Rendus. Mathématique PY - 2016 SP - 808 EP - 824 VL - 354 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2016.05.014 LA - en ID - CRMATH_2016__354_8_808_0 ER -
Salim A. Messaoudi; Soh E. Mukiawa; Enyi D. Cyril. Finite dimensional global attractor for a suspension bridge problem with delay. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 808-824. doi : 10.1016/j.crma.2016.05.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.014/
[1] Bending and stretching energies in a rectangular plate modeling suspension bridges, Nonlinear Anal., Volume 106 (2014), pp. 18-34
[2] Structural instability of nonlinear plates modelling suspension bridges: mathematical answers to some long-standing questions, Nonlinear Anal., Real World Appl., Volume 28 (2016), pp. 91-125
[3] Long-Time Behaviour of Second Order Evolution Equations with Nonlinear Damping 195, vol. 12, Memoirs of the American Mathematical Society, Providence, RI, USA, 2008
[4] Von Karman Evolution Equations, Springer Verlag, 2012
[5] A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5879-5908
[6] Mathematical Models for Suspension Bridges: Nonlinear Structural Instability, Modeling, Simulation and Applications, vol. 15, Springer Verlag, 2015
[7] Modeling suspension bridges through the Von Karman quasilinear plate equations (A.N. Carvalho; B. Ruf; E. Moreira dos Santos; J.-P. Gossez; S.H.M. Soares; T. Cazenave, eds.), Progress in Nonlinear Differential Equations and Their Applications, Contributions to Nonlinear Differential Equations and Systems, a Tribute to Djairo Guedes de Figueiredo on occasion of his 80th birthday, Birhäuser, 2015, pp. 269-297
[8] Extraits des recherches sur la flexion des plans élastiques, Bull. Sci. Soc. Philom. Paris (1823), pp. 92-102
[9] Stability and instability results of wave equation with a delay term in the boundary or internal feedback, SIAM J. Control Optim., Volume 45 (2006) no. 5, pp. 1561-1590
[10] Stabilization of wave equation with boundary or internal distributed delay, Differ. Integral Equ., Volume 21 (2008) no. 9–10, pp. 935-958
[11] Exponential stability of the wave equation with boundary time-varying delay, Discrete Contin. Dyn. Syst., Volume 4 (2011) no. 3, pp. 693-722
[12] Semigroups of Linear Operators and Application to PDE, Applied Mathematical Sciences, vol. 44, Springer, 1983
[13] Finite time blow-up and global solutions for fourth order damped wave equations, J. Math. Anal. Appl., Volume 418 (2014) no. 2, pp. 713-733
- A suspension bridges with a fractional time delay: Asymptotic behavior and Blow-up in finite time, AIMS Mathematics, Volume 9 (2024) no. 8, p. 22022 | DOI:10.3934/math.20241070
- General decay estimate for a weakly dissipative viscoelastic suspension bridge, Advances in mathematical modeling and scientific computing. International conference on recent developments in mathematics, Dubai, United Arab Emirates, August 24–26, 2022. Volume 2, Cham: Birkhäuser, 2024, pp. 15-26 | DOI:10.1007/978-3-031-41420-6_2 | Zbl:1548.35063
- General decay estimate for coupled plate problem with memory, Results in Applied Mathematics, Volume 15 (2022), p. 14 (Id/No 100306) | DOI:10.1016/j.rinam.2022.100306 | Zbl:1497.35052
- Equivalence between internal observability and exponential stabilization for suspension bridge problem, Ricerche di Matematica, Volume 71 (2022) no. 2, pp. 711-721 | DOI:10.1007/s11587-021-00566-4 | Zbl:1527.35050
- Stability result of a suspension bridge problem with time-varying delay and time-varying weight, Arabian Journal of Mathematics, Volume 10 (2021) no. 3, pp. 659-668 | DOI:10.1007/s40065-021-00345-x | Zbl:1479.35113
- Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback, Discrete and Continuous Dynamical Systems. Series B, Volume 26 (2021) no. 2, pp. 907-942 | DOI:10.3934/dcdsb.2020147 | Zbl:1465.35059
- General decay estimate for a two-dimensional plate equation with time-varying feedback and time-varying coefficient, Results in Applied Mathematics, Volume 12 (2021), p. 12 (Id/No 100219) | DOI:10.1016/j.rinam.2021.100219 | Zbl:1481.35044
- Smooth dynamics of weakly damped Lamé systems with delay, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 4, pp. 3759-3771 | DOI:10.1137/20m1374948 | Zbl:1469.35050
- General decay of solutions for a viscoelastic suspension bridge with nonlinear damping and a source term, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 3, p. 26 (Id/No 90) | DOI:10.1007/s00033-021-01526-6 | Zbl:1464.35031
- Stability of a suspension bridge with structural damping, Annales Polonici Mathematici, Volume 125 (2020) no. 1, pp. 59-70 | DOI:10.4064/ap191023-4-2 | Zbl:1445.35061
- Decay result for a delay viscoelastic plate equation, Bulletin of the Brazilian Mathematical Society. New Series, Volume 51 (2020) no. 2, pp. 333-356 | DOI:10.1007/s00574-019-00155-y | Zbl:1437.35453
- Uniform attractors for the non-autonomous suspension bridge equation with time delay, Journal of Inequalities and Applications, Volume 2019 (2019), p. 17 (Id/No 180) | DOI:10.1186/s13660-019-2133-4 | Zbl:1499.37120
- Asymptotic behaviour of a suspension bridge problem, Arab Journal of Mathematical Sciences, Volume 24 (2018) no. 1, pp. 31-42 | DOI:10.1016/j.ajmsc.2017.07.002 | Zbl:1382.35043
- Existence and general decay estimate for a nonlinear plate problem, Boundary Value Problems, Volume 2018 (2018), p. 15 (Id/No 11) | DOI:10.1186/s13661-018-0931-0 | Zbl:1406.35056
- Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms, NoDEA. Nonlinear Differential Equations and Applications, Volume 24 (2017) no. 6, p. 35 (Id/No 67) | DOI:10.1007/s00030-017-0491-5 | Zbl:1403.35177
Cité par 15 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier