Nous utilisons des résultats classiques sur les zéros des fonctions L de Dirichlet pour prouver la non-nullité de deux déterminants analogues au déterminant de Maillet. Nous en déduisons un théorème d'extension pour les isométries de Lee et euclidienne des codes linéaires sur un corps premier.
We use classical results on the zeroes of Dirichlet L-functions to prove the nonvanishing of two determinants analogous to Maillet's determinant. We deduce an extension theorem for Lee and Euclidean isometries of linear codes over a prime field.
Accepté le :
Publié le :
Serhii Dyshko 1 ; Philippe Langevin 1 ; Jay A. Wood 2
@article{CRMATH_2016__354_7_649_0, author = {Serhii Dyshko and Philippe Langevin and Jay A. Wood}, title = {Deux analogues au d\'eterminant de {Maillet}}, journal = {Comptes Rendus. Math\'ematique}, pages = {649--652}, publisher = {Elsevier}, volume = {354}, number = {7}, year = {2016}, doi = {10.1016/j.crma.2016.05.004}, language = {fr}, }
Serhii Dyshko; Philippe Langevin; Jay A. Wood. Deux analogues au déterminant de Maillet. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 649-652. doi : 10.1016/j.crma.2016.05.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.004/
[1] Equivalence theorems and the local–global property, University of Kentucky, Ann Arbor, MI, USA, 2012 (ProQuest LLC, PhD thesis)
[2] A generalized weight for linear codes and a Witt–MacWilliams theorem, J. Comb. Theory, Ser. A, Volume 29 (1980) no. 3, pp. 363-367
[3] Error-correcting codes for multiple-level transmission, Bell Syst. Tech. J., Volume 40 (1961), pp. 281-308
[4] Combinatorial problems of elementary Abelian groups, Radcliffe College, Cambridge, MA, USA, 1962 (PhD thesis)
[5] Question 4269, L'Intermédiaire Math., Volume 20 (1913), p. 218
[6] Contributions to the History of Determinants, 1900–1920, Blackie & Son Ltd., London and Glasgow, 1930
[7] Introduction to Cyclotomic Fields, Springer, 1997
[8] Duality for modules over finite rings and applications to coding theory, Amer. J. Math., Volume 121 (1999), pp. 555-575
- Two approaches to the extension problem for arbitrary weights over finite module alphabets, Applicable Algebra in Engineering, Communication and Computing, Volume 32 (2021) no. 3, p. 427 | DOI:10.1007/s00200-020-00465-5
- The extension theorem for Lee and Euclidean weight codes over integer residue rings, Designs, Codes and Cryptography, Volume 87 (2019) no. 6, p. 1253 | DOI:10.1007/s10623-018-0521-2
- The extension theorem for the Lee and Euclidean weights overZ/pkZ, Journal of Pure and Applied Algebra, Volume 223 (2019) no. 3, p. 922 | DOI:10.1016/j.jpaa.2018.05.006
- Isometry groups of additive codes over finite fields, Journal of Algebra and Its Applications, Volume 17 (2018) no. 10, p. 1850198 | DOI:10.1142/s0219498818501980
- When the extension property does not hold, Journal of Algebra and Its Applications, Volume 16 (2017) no. 05, p. 1750098 | DOI:10.1142/s0219498817500980
Cité par 5 documents. Sources : Crossref
Commentaires - Politique