[Two analogues of Maillet's determinant]
We use classical results on the zeroes of Dirichlet L-functions to prove the nonvanishing of two determinants analogous to Maillet's determinant. We deduce an extension theorem for Lee and Euclidean isometries of linear codes over a prime field.
Nous utilisons des résultats classiques sur les zéros des fonctions L de Dirichlet pour prouver la non-nullité de deux déterminants analogues au déterminant de Maillet. Nous en déduisons un théorème d'extension pour les isométries de Lee et euclidienne des codes linéaires sur un corps premier.
Accepted:
Published online:
Serhii Dyshko 1; Philippe Langevin 1; Jay A. Wood 2
@article{CRMATH_2016__354_7_649_0, author = {Serhii Dyshko and Philippe Langevin and Jay A. Wood}, title = {Deux analogues au d\'eterminant de {Maillet}}, journal = {Comptes Rendus. Math\'ematique}, pages = {649--652}, publisher = {Elsevier}, volume = {354}, number = {7}, year = {2016}, doi = {10.1016/j.crma.2016.05.004}, language = {fr}, }
Serhii Dyshko; Philippe Langevin; Jay A. Wood. Deux analogues au déterminant de Maillet. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 649-652. doi : 10.1016/j.crma.2016.05.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.004/
[1] Equivalence theorems and the local–global property, University of Kentucky, Ann Arbor, MI, USA, 2012 (ProQuest LLC, PhD thesis)
[2] A generalized weight for linear codes and a Witt–MacWilliams theorem, J. Comb. Theory, Ser. A, Volume 29 (1980) no. 3, pp. 363-367
[3] Error-correcting codes for multiple-level transmission, Bell Syst. Tech. J., Volume 40 (1961), pp. 281-308
[4] Combinatorial problems of elementary Abelian groups, Radcliffe College, Cambridge, MA, USA, 1962 (PhD thesis)
[5] Question 4269, L'Intermédiaire Math., Volume 20 (1913), p. 218
[6] Contributions to the History of Determinants, 1900–1920, Blackie & Son Ltd., London and Glasgow, 1930
[7] Introduction to Cyclotomic Fields, Springer, 1997
[8] Duality for modules over finite rings and applications to coding theory, Amer. J. Math., Volume 121 (1999), pp. 555-575
Cited by Sources:
Comments - Policy