Comptes Rendus
Partial differential equations
Note to the problem of the asymptotic behavior of a viscous incompressible flow around a rotating body
Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 794-798.

We consider weak solutions to the stationary Navier–Stokes system with Oseen and rotational terms, in an exterior domain. We are interested in the leading term for the velocity field and its gradient. Moreover, we deal with the asymptotic behavior at infinity. We proved that the velocity may be split, within constants, into the first column of the fundamental solution to the Oseen system, plus a remainder term decaying pointwise near infinity at a rate which is higher than the decay rate of the Oseen tensor. This result improves the theory proposed by M. Kyed [Asymptotic profile of a linearized flow past a rotating body, Q. Appl. Math. 71 (2013) 489–500; On the asymptotic structure of a Navier–Stokes flow past a rotating body, J. Math. Soc. Jpn. 66 (2014) 1–16].

Nous considérons des solutions faibles du système de Navier–Stokes stationnaire avec un terme d'Oseen et des termes rotationnels dans un domaine extérieur. Notre intérêt se porte sur la partie principale d'un développement asymptotique de la vitesse et de son gradient. Nous montrons que la vitesse peut être scindée, à des constantes près, en la première colonne de la solution fondamentale du système d'Oseen ( « tenseur d'Oseen »), plus un reste qui décroît ponctuellement dans un voisinage d'infini, à un taux qui est plus élevé que le taux de décroissance du tenseur d'Oseen. Ce résultat améliore la théorie présentée par M. Kyed [Asymptotic profile of a linearized flow past a rotating body, Q. Appl. Math. 71 (2013) 489–500 ; On the asymptotic structure of a Navier–Stokes flow past a rotating body, J. Math. Soc. Jpn. 66 (2014) 1–16].

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.05.013

Paul Deuring 1, 2; Stanislav Kračmar 3; Šárka Nečasová 4

1 Université Lille-Nord-de-France, 59000 Lille, France
2 ULCO, LMPA, 62228 Calais cedex, France
3 Department of Technical Mathematics, Czech Technical University, Karlovo nám. 13, 121 35 Prague 2, Czech Republic
4 Institute of Mathematics, Žitná 25, 115 67 Praha 1, Czech Republic
@article{CRMATH_2016__354_8_794_0,
     author = {Paul Deuring and Stanislav Kra\v{c}mar and \v{S}\'arka Ne\v{c}asov\'a},
     title = {Note to the problem of the asymptotic behavior of a viscous incompressible flow around a rotating body},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {794--798},
     publisher = {Elsevier},
     volume = {354},
     number = {8},
     year = {2016},
     doi = {10.1016/j.crma.2016.05.013},
     language = {en},
}
TY  - JOUR
AU  - Paul Deuring
AU  - Stanislav Kračmar
AU  - Šárka Nečasová
TI  - Note to the problem of the asymptotic behavior of a viscous incompressible flow around a rotating body
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 794
EP  - 798
VL  - 354
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2016.05.013
LA  - en
ID  - CRMATH_2016__354_8_794_0
ER  - 
%0 Journal Article
%A Paul Deuring
%A Stanislav Kračmar
%A Šárka Nečasová
%T Note to the problem of the asymptotic behavior of a viscous incompressible flow around a rotating body
%J Comptes Rendus. Mathématique
%D 2016
%P 794-798
%V 354
%N 8
%I Elsevier
%R 10.1016/j.crma.2016.05.013
%G en
%F CRMATH_2016__354_8_794_0
Paul Deuring; Stanislav Kračmar; Šárka Nečasová. Note to the problem of the asymptotic behavior of a viscous incompressible flow around a rotating body. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 794-798. doi : 10.1016/j.crma.2016.05.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.013/

[1] P. Deuring; S. Kračmar; Š. Nečasová On pointwise decay of linearized stationary incompressible viscous flow around rotating and translating bodies, SIAM J. Math. Anal., Volume 43 (2011), pp. 705-738

[2] P. Deuring; S. Kračmar; Š. Nečasová Linearized stationary incompressible flow around rotating and translating bodies: asymptotic profile of the velocity gradient and decay estimate of the second derivatives of the velocity, J. Differ. Equ., Volume 252 (2012), pp. 459-476

[3] P. Deuring; S. Kračmar; Š. Nečasová Pointwise decay of stationary rotational viscous incompressible flows with nonzero velocity at infinity, J. Differ. Equ., Volume 255 (2013), pp. 1576-1606

[4] P. Deuring; S. Kračmar; Š. Nečasová Leading terms of velocity and its gradient of the stationary rotational viscous incompressible flows with nonzero velocity at infinity | arXiv

[5] P. Deuring; S. Kračmar; Š. Nečasová Asymptotic structure of viscous incompressible flow around a rotating body, with nonvanishing flow field at infinity | arXiv

[6] G.P. Galdi An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Vol. I. Linearised Steady Problems, Springer Tracts in Natural Philosophy, vol. 38, Springer, New York e.a., 1998

[7] G.P. Galdi On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications (S. Friedlander; D. Serre, eds.), Handbook of Mathematical Fluid Dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 653-791

[8] G.P. Galdi; M. Kyed Steady-state Navier–Stokes flows past a rotating body: Leray solutions are physically reasonable, Arch. Ration. Mech. Anal., Volume 200 (2011), pp. 21-58

[9] M. Kyed Asymptotic profile of a linearized flow past a rotating body, Q. Appl. Math., Volume 71 (2013), pp. 489-500

[10] M. Kyed On the asymptotic structure of a Navier–Stokes flow past a rotating body, J. Math. Soc. Jpn., Volume 66 (2014), pp. 1-16

[11] V.A. Solonnikov Estimates of the solutions of a nonstationary linearized system of Navier–Stokes equations, Tr. Mat. Inst. Steklova, Volume 70 (1964), pp. 213-317 (in Russian); English translation Transl. Amer. Math. Soc., 75, 1968, pp. 1-116

[12] E.A. Thomann; R.B. Guenther The fundamental solution of the linearized Navier–Stokes equations for spinning bodies in three spatial dimensions – time-dependent case, J. Math. Fluid Mech., Volume 8 (2006), pp. 77-98

Cited by Sources:

Comments - Policy