Comptes Rendus
Partial differential equations
Quantum ergodicity for Eisenstein functions
Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 907-911.

A new proof is given of Quantum Ergodicity for Eisenstein Series for cusped hyperbolic surfaces. This result is also extended to higher dimensional examples, with variable curvature.

On donne une nouvelle preuve de l'ergodicité quantique des séries d'Eisenstein pour les surfaces de Riemann à pointes. On étend aussi ce résultat en plus grande dimension, en autorisant la courbure variable.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.06.006

Yannick Bonthonneau 1; Steve Zelditch 2

1 CIRGET, UQÀM, 201, av. Président-Kennedy, Montréal, Québec, H2X 3Y7, Canada
2 Department of Mathematics, Northwestern University, Evanston, IL 60208, USA
@article{CRMATH_2016__354_9_907_0,
     author = {Yannick Bonthonneau and Steve Zelditch},
     title = {Quantum ergodicity for {Eisenstein} functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {907--911},
     publisher = {Elsevier},
     volume = {354},
     number = {9},
     year = {2016},
     doi = {10.1016/j.crma.2016.06.006},
     language = {en},
}
TY  - JOUR
AU  - Yannick Bonthonneau
AU  - Steve Zelditch
TI  - Quantum ergodicity for Eisenstein functions
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 907
EP  - 911
VL  - 354
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2016.06.006
LA  - en
ID  - CRMATH_2016__354_9_907_0
ER  - 
%0 Journal Article
%A Yannick Bonthonneau
%A Steve Zelditch
%T Quantum ergodicity for Eisenstein functions
%J Comptes Rendus. Mathématique
%D 2016
%P 907-911
%V 354
%N 9
%I Elsevier
%R 10.1016/j.crma.2016.06.006
%G en
%F CRMATH_2016__354_9_907_0
Yannick Bonthonneau; Steve Zelditch. Quantum ergodicity for Eisenstein functions. Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 907-911. doi : 10.1016/j.crma.2016.06.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.06.006/

[1] Y. Bonthonneau Long time quantum evolution of observables, Commun. Math. Phys., Volume 343 (2016) no. 1, pp. 311-359

[2] Y. Bonthonneau Weyl laws for manifolds with hyperbolic cusps, December 2015 | arXiv

[3] Y. Colin de Verdière Une nouvelle démonstration du prolongement méromorphe des séries d'Eisenstein, C. R. Acad. Sci. Paris, Sér. I Math., Volume 293 (1981) no. 7, pp. 361-363

[4] Y. Colin de Verdière Ergodicité et fonctions propres du Laplacien, Commun. Math. Phys., Volume 102 (1985) no. 3, pp. 497-502

[5] Werner Müller The point spectrum and spectral geometry for Riemannian manifolds with cusps, Math. Nachr., Volume 125 (1986), pp. 243-257

[6] Werner Müller Spectral geometry and scattering theory for certain complete surfaces of finite volume, Invent. Math., Volume 109 (1992) no. 2, pp. 265-305

[7] Peter Sarnak Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Commun. Pure Appl. Math., Volume 34 (1981) no. 6, pp. 719-739

[8] Steven Zelditch Pseudodifferential analysis on hyperbolic surfaces, J. Funct. Anal., Volume 68 (1986) no. 1, pp. 72-105

[9] Steven Zelditch Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941

[10] Steven Zelditch Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series, J. Funct. Anal., Volume 97 (1991) no. 1, pp. 1-49

[11] Maciej Zworski Semiclassical Analysis, Grad. Stud. Math., vol. 138, American Mathematical Society, Providence, RI, 2012

Cited by Sources:

Comments - Policy