Comptes Rendus
Complex analysis
On h-extendible domains and associated models
Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 901-906.

A boundary point of a smooth pseudoconvexdomain in Cn is said to be h-extendible if its Catlin's multi-type coincides with its D'Angelo's multi-type. There is a local model defined by Catlin's multi-weight. In this paper, we show that a domain in Cn with a noncompact automorphism group is biholomorphically equivalent to its associated model if there exists a sequence of automorphisms of the domain that has an orbit converging to an h-extendible boundary point non-tangentially in a cone region.

Un point frontière d'un domaine pseudo-convexe lisse de Cn est dit h-extensible si son multi-type de Catlin coïncide avec son multi-type de D'Angelo. Le multi-poids de Catlin définit un modèle local. Nous montrons ici qu'un domaine de Cn avec un groupe d'automorphismes non compact est bi-holomorphiquement équivalent à son modèle associé s'il existe une suite d'automorphismes du domaine ayant une orbite convergeant non tangentiellement dans un cône, vers un point frontière h-extensible.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.07.005

Feng Rong 1; Ben Zhang 1

1 Department of Mathematics, School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China
@article{CRMATH_2016__354_9_901_0,
     author = {Feng Rong and Ben Zhang},
     title = {On \protect\emph{h}-extendible domains and associated models},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {901--906},
     publisher = {Elsevier},
     volume = {354},
     number = {9},
     year = {2016},
     doi = {10.1016/j.crma.2016.07.005},
     language = {en},
}
TY  - JOUR
AU  - Feng Rong
AU  - Ben Zhang
TI  - On h-extendible domains and associated models
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 901
EP  - 906
VL  - 354
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2016.07.005
LA  - en
ID  - CRMATH_2016__354_9_901_0
ER  - 
%0 Journal Article
%A Feng Rong
%A Ben Zhang
%T On h-extendible domains and associated models
%J Comptes Rendus. Mathématique
%D 2016
%P 901-906
%V 354
%N 9
%I Elsevier
%R 10.1016/j.crma.2016.07.005
%G en
%F CRMATH_2016__354_9_901_0
Feng Rong; Ben Zhang. On h-extendible domains and associated models. Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 901-906. doi : 10.1016/j.crma.2016.07.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.07.005/

[1] E. Bedford; S.I. Pinchuk Convex domains with noncompact groups of automorphisms, Mat. Sb., Volume 185 (1994) no. 5, pp. 3-26

[2] D. Catlin Boundary invariants of pseudoconvex domains, Ann. of Math. (2), Volume 120 (1984) no. 3, pp. 529-586

[3] J.P. D'Angelo Several Complex Variables and the Geometry of Real Hypersurfaces, Stud. Adv. Math., CRC Press, Boca Raton, FL, USA, 1993

[4] K. Diederich; G. Herbort Pseudoconvex domains of semiregular type, Contributions to Complex Analysis and Analytic Geometry, Asp. Math., E, vol. 26, Vieweg, Braunschweig, 1994, pp. 127-161

[5] H. Gaussier Characterization of convex domains with noncompact automorphism group, Mich. Math. J., Volume 44 (1997) no. 2, pp. 375-388

[6] H. Gaussier Tautness and complete hyperbolicity of domains in Cn, Proc. Amer. Math. Soc., Volume 127 (1999) no. 1, pp. 105-116

[7] R.E. Greene; K.-T. Kim; S.G. Krantz The Geometry of Complex Domains, Prog. Math., vol. 291, Birkhäuser Boston, Inc., Boston, MA, USA, 2011

[8] K.-T. Kim Complete localization of domains with noncompact automorphism groups, Trans. Amer. Math. Soc., Volume 319 (1990) no. 1, pp. 139-153

[9] S.G. Krantz Function Theory of Several Complex Variables, Pure Appl. Math., John Wiley & Sons, Inc., New York, 1982

[10] L. Lee; B. Thomas; B. Wong On boundary accumulation points of a convex domain in Cn, Methods Appl. Anal., Volume 21 (2014) no. 4, pp. 427-440

[11] N. Nikolov Biholomorphy of the model domains at a semiregular boundary point, C. R. Acad. Bulgare Sci., Volume 55 (2002) no. 5, pp. 5-8

[12] J.-P. Rosay Sur une caractérisation de la boule parmi les domaines de Cn par son groupe d'automorphismes, Ann. Inst. Fourier (Grenoble), Volume 29 (1979) no. 4, pp. 91-97 (ix)

[13] B. Wong Characterization of the unit ball in Cn by its automorphism group, Invent. Math., Volume 41 (1977) no. 3, pp. 253-257

[14] J. Yu Geometric analysis on weakly pseudoconvex domains, Washington University in St. Louis, ProQuest LLC, Ann Arbor, MI, 1993 (Ph.D. thesis)

[15] J. Yu Weighted boundary limits of the generalized Kobayashi–Royden metrics on weakly pseudoconvex domains, Trans. Amer. Math. Soc., Volume 347 (1995) no. 2, pp. 587-614

Cited by Sources:

The authors are partially supported by the National Natural Science Foundation of China (Grant No. 11371246).

Comments - Policy