Comptes Rendus
Algebraic geometry
The motive of the Fano surface of lines
Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 925-930.

In this short note, we prove that the Chow motive of the Fano surface of lines on the smooth cubic threefold is finite-dimensional in the sense of Kimura. This gives an example of a variety not dominated by a product of curves whose Chow motive is of Abelian type.

Dans cette note, nous prouvons que le motif de Chow de la surface des droites d'une hypersurface cubique lisse dans P4 est de dimension finie dans le sens de Kimura. Ceci constitue un exemple d'une variété qui n'est pas domineé par un produit de courbes, mais dont le motif de Chow est de type abélien.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.07.003

Humberto Diaz 1

1 Department of Mathematics, Duke University, Durham, NC, USA
@article{CRMATH_2016__354_9_925_0,
     author = {Humberto Diaz},
     title = {The motive of the {Fano} surface of lines},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {925--930},
     publisher = {Elsevier},
     volume = {354},
     number = {9},
     year = {2016},
     doi = {10.1016/j.crma.2016.07.003},
     language = {en},
}
TY  - JOUR
AU  - Humberto Diaz
TI  - The motive of the Fano surface of lines
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 925
EP  - 930
VL  - 354
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2016.07.003
LA  - en
ID  - CRMATH_2016__354_9_925_0
ER  - 
%0 Journal Article
%A Humberto Diaz
%T The motive of the Fano surface of lines
%J Comptes Rendus. Mathématique
%D 2016
%P 925-930
%V 354
%N 9
%I Elsevier
%R 10.1016/j.crma.2016.07.003
%G en
%F CRMATH_2016__354_9_925_0
Humberto Diaz. The motive of the Fano surface of lines. Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 925-930. doi : 10.1016/j.crma.2016.07.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.07.003/

[1] A. Beauville Les singularités du diviseur Θ de la jacobienne intermédiaire de l'hypersurface cubique dans P4, Varenna, 1981 (Lecture Notes in Math.), Volume vol. 947, Springer, Berlin, New York (1982), pp. 190-208

[2] A. Beauville Sur l'anneau de Chow d'une variété abélienne, Math. Ann., Volume 273 (1986), pp. 647-651

[3] S. Bloch Lectures on the Theory of Algebraic Cycles, Duke University Mathematics Series, vol. IV, Mathematics Department, Duke University, Durham, NC, USA, 1980

[4] A. Collino The fundamental group of the Fano surface I, II, Varenna, 1981 (Lecture Notes in Math.), Volume vol. 947, Springer, Berlin (1982), pp. 209-218 (219–220)

[5] C. Deninger; J. Murre Motivic decomposition of Abelian schemes and the Fourier transform, Compos. Math., Volume 88 (1993) no. 3, pp. 333-353

[6] W. Fulton Intersection Theory, Ergebnisse, 3. Folge, vol. 2, Springer Verlag, 1984

[7] S. Gorchinskiy; V. Guletskii Motives and representability of algebraic cycles on threefolds over a field, J. Algebraic Geom., Volume 21 (2012) no. 2, pp. 347-373

[8] U. Jannsen Motivic sheaves and filtrations on Chow groups (U. Jannsen; S. Kleiman; J.-P. Serre, eds.), Motives, Proceedings of Symposia in Pure Mathematics, Part 1, vol. 55, American Mathematical Society, Providence, RI, USA, 1994, pp. 245-302

[9] B. Kahn, Letter to the author, 2015.

[10] S.-I. Kimura Chow groups are finite-dimensional, in some sense, Math. Ann., Volume 331 (2005) no. 1, pp. 173-201

[11] S.L. Kleiman The standard conjectures (U. Jannsen; S. Kleiman; J.-P. Serre, eds.), Motives, Proceedings of Symposia in Pure Mathematics, Part 1, vol. 55, American Mathematical Society, Providence, RI, USA, 1994, pp. 3-20

[12] R. Laterveer, A remark on the motive of the Fano variety of lines of a cubic, preprint.

[13] J. Murre On the motive of an algebraic surface, J. Reine Angew. Math., Volume 409 (1990), pp. 190-204

[14] N. Nitsure Construction of Hilbert and Quot Schemes | arXiv

[15] X. Roulleau On the Tate conjecture for the Fano surfaces of cubic threefolds | arXiv

[16] S. Schreieder Theta divisors with curve summands and the Schottky problem | arXiv

[17] C. Voisin Chow Rings, Decomposition of the Diagonal, and the Topology of Families, Princeton University Press, Princeton, NJ, USA, 2014

Cited by Sources:

Comments - Policy