Comptes Rendus
Algebraic geometry/Analytic geometry
Kobayashi measure hyperbolicity for singular directed varieties of general type
Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 920-924.

In this note, we prove the non-degeneracy of the Kobayashi–Eisenman volume measure of a singular directed varieties (X,V), i.e. the Kobayashi measure hyperbolicity of (X,V), as long as the canonical sheaf KV of V is big in the sense of Demailly.

Dans cette note, nous démontrons la non-dégénérescence de la mesure de volume au sens de Kobayashi–Eisenman pour une variété dirigée singulière (X,V), c'est-à-dire l'hyperbolicité de la mesure au sens de Kobayashi de (X,V) lorsque le faisceau canonique KV de V est gros au sens de Demailly.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.07.010

Ya Deng 1, 2

1 Institut Fourier, Université Grenoble Alpes, France
2 School of Mathematical Sciences, University of Science and Technology of China, China
@article{CRMATH_2016__354_9_920_0,
     author = {Ya Deng},
     title = {Kobayashi measure hyperbolicity for singular directed varieties of general type},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {920--924},
     publisher = {Elsevier},
     volume = {354},
     number = {9},
     year = {2016},
     doi = {10.1016/j.crma.2016.07.010},
     language = {en},
}
TY  - JOUR
AU  - Ya Deng
TI  - Kobayashi measure hyperbolicity for singular directed varieties of general type
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 920
EP  - 924
VL  - 354
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2016.07.010
LA  - en
ID  - CRMATH_2016__354_9_920_0
ER  - 
%0 Journal Article
%A Ya Deng
%T Kobayashi measure hyperbolicity for singular directed varieties of general type
%J Comptes Rendus. Mathématique
%D 2016
%P 920-924
%V 354
%N 9
%I Elsevier
%R 10.1016/j.crma.2016.07.010
%G en
%F CRMATH_2016__354_9_920_0
Ya Deng. Kobayashi measure hyperbolicity for singular directed varieties of general type. Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 920-924. doi : 10.1016/j.crma.2016.07.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.07.010/

[1] M. Brunella Courbes entières et feuilletages holomorphes, Enseign. Math., Volume 45 (1999), pp. 195-216

[2] M. Brunella Uniformisation of foliations by curves, Holomorphic Dynamical Systems, Springer, Berlin, Heidelberg, 2010, pp. 105-163

[3] J.-P. Demailly Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties, Lecture Notes in Summer School in Mathematics, 2012

[4] Y. Deng Degeneracy of entire curves into higher dimensional complex manifolds | arXiv

[5] C. Gasbarri; G. Pacienza; E. Rousseau Higher dimensional tautological inequalities and applications, Math. Ann., Volume 356 (2013) no. 2, pp. 703-735

[6] P.A. Griffiths Holomorphic mapping into canonical algebraic varieties, Ann. of Math. (2), Volume 93 (1971) no. 3, pp. 439-458

[7] S. Kobayashi; T. Ochiai Mappings into compact complex manifolds with negative first Chern class, J. Math. Soc. Jpn., Volume 23 (1971) no. 1, pp. 137-148

[8] R. Lazarsfeld Positivity in Algebraic Geometry II, Springer-Verlag, 2004

[9] M. McQuillan Diophantine approximations and foliations, Publ. Math. Inst. Hautes Études Sci., Volume 87 (1998) no. 1, pp. 121-174

[10] M. McQuillan Canonical models of foliations, Pure Appl. Math. Q., Volume 4 (2008) no. 3, pp. 877-1012

Cited by Sources:

Comments - Policy