In this note, we prove the non-degeneracy of the Kobayashi–Eisenman volume measure of a singular directed varieties , i.e. the Kobayashi measure hyperbolicity of , as long as the canonical sheaf of V is big in the sense of Demailly.
Dans cette note, nous démontrons la non-dégénérescence de la mesure de volume au sens de Kobayashi–Eisenman pour une variété dirigée singulière , c'est-à-dire l'hyperbolicité de la mesure au sens de Kobayashi de lorsque le faisceau canonique de V est gros au sens de Demailly.
Accepted:
Published online:
Ya Deng 1, 2
@article{CRMATH_2016__354_9_920_0, author = {Ya Deng}, title = {Kobayashi measure hyperbolicity for singular directed varieties of general type}, journal = {Comptes Rendus. Math\'ematique}, pages = {920--924}, publisher = {Elsevier}, volume = {354}, number = {9}, year = {2016}, doi = {10.1016/j.crma.2016.07.010}, language = {en}, }
Ya Deng. Kobayashi measure hyperbolicity for singular directed varieties of general type. Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 920-924. doi : 10.1016/j.crma.2016.07.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.07.010/
[1] Courbes entières et feuilletages holomorphes, Enseign. Math., Volume 45 (1999), pp. 195-216
[2] Uniformisation of foliations by curves, Holomorphic Dynamical Systems, Springer, Berlin, Heidelberg, 2010, pp. 105-163
[3] Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties, Lecture Notes in Summer School in Mathematics, 2012
[4] Degeneracy of entire curves into higher dimensional complex manifolds | arXiv
[5] Higher dimensional tautological inequalities and applications, Math. Ann., Volume 356 (2013) no. 2, pp. 703-735
[6] Holomorphic mapping into canonical algebraic varieties, Ann. of Math. (2), Volume 93 (1971) no. 3, pp. 439-458
[7] Mappings into compact complex manifolds with negative first Chern class, J. Math. Soc. Jpn., Volume 23 (1971) no. 1, pp. 137-148
[8] Positivity in Algebraic Geometry II, Springer-Verlag, 2004
[9] Diophantine approximations and foliations, Publ. Math. Inst. Hautes Études Sci., Volume 87 (1998) no. 1, pp. 121-174
[10] Canonical models of foliations, Pure Appl. Math. Q., Volume 4 (2008) no. 3, pp. 877-1012
Cited by Sources:
Comments - Policy