Mould calculus is a powerful combinatorial tool that often provides some explicit formulae when there are no other available computational methods. It has a well-known interpretation/dictionary in terms of Hopf algebras. But this dictionary does not provide any equivalent of formal moulds. Thus, we present here such an interpretation and give a generic way to prove mould symmetries of formal moulds.
Le calcul moulien est un outil combinatoire puissant, qui fournit souvent des formules explicites, alors que d'autres moyens de calcul n'aboutissent pas. Il en existe une interprétation/un dictionnaire en termes d'algèbres de Hopf. Mais ce dictionnaire n'a pas été développé jusqu'aux moules formels. Nous présentons ici une telle interprétation et donnons alors une méthode générique permettant de prouver les symétries de moules formels.
Accepted:
Published online:
Olivier Bouillot 1
@article{CRMATH_2016__354_10_965_0, author = {Olivier Bouillot}, title = {Mould calculus {\textendash} {On} the secondary symmetries}, journal = {Comptes Rendus. Math\'ematique}, pages = {965--970}, publisher = {Elsevier}, volume = {354}, number = {10}, year = {2016}, doi = {10.1016/j.crma.2016.08.002}, language = {en}, }
Olivier Bouillot. Mould calculus – On the secondary symmetries. Comptes Rendus. Mathématique, Volume 354 (2016) no. 10, pp. 965-970. doi : 10.1016/j.crma.2016.08.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.08.002/
[1] Invariants analytiques des difféomorphismes et multizêtas, 2011 (Ph.D. thesis, Orsay, France 291 p)
[2] The multitangent functions algebra, J. Algebra (2014) no. 410, pp. 148-238
[3] On the Hurwitz multizeta functions, Adv. Appl. Math., Volume 71 (2015), pp. 68-124
[4] O. Bouillot, Multiple Bernoulli polynomials, in preparation.
[5] An operational calculus for the Mould operand, Int. Math. Res. Not., Volume 9 (2008)
[6] Calcul moulien, Ann. Fac. Sci. Toulouse Math. (6), Volume 18 (2009) no. 2, pp. 307-395
[7] Les fonctions résurgentes, vol. 1, Publications mathématiques d'Orsay, vol. 81-05, 1981
[8] Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble), Volume 42 (1992) no. 1–2, pp. 73-164
[9] ARI/GARI, la dimorphie et l'arithmétique des multizêtas, un premier bilan, J. Théor. Nombres Bordeaux, Volume 15 (2003) no. 2, pp. 411-478
[10] The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducibles (O. Costin; F. Fauvet; F. Menous; D. Sauzin, eds.), Asymptotic in Dynamics, Geometry and PDEs; Generalized Borel Summation, Publications of the Scuola Normale Superiore, Pisa, Italy, vol. 12, 2011, pp. 201-218
[11] Deformations of shuffles and quasi-shuffles, Ann. Inst. Fourier (Grenoble), Volume 66 (2016) no. 1, pp. 209-237
[12] Symmetril moulds, generic group schemes, resummation of multizetas, 2016 | arXiv
[13] Binary shuffle bases for quasi-symmetric functions | arXiv
[14] Free Lie Algebras, London Math. Soc. Monographs, News Series, vol. 7, Oxford Sciences Publications, Oxford, UK, 1993
[15] Mould expansion for the saddle-node and resurgence monomials (A. Connes; F. Fauvet; J.-P. Ramis, eds.), Renormalization and Galois Theories, IRMA Lectures in Mathematics and Theoretical Physics, vol. 15, European Mathematical Society, Zürich, Switzerland, 2009, pp. 83-163
[16] Non-commutative symmetric functions and combinatorial Hopf algebras (O. Costin; F. Fauvet; F. Menous; D. Sauzin, eds.), Asymptotics in Dynamics, Geometry and PDEs; Generalized Borel Summation, Publications of the Scuola Normale Superiore, Pisa, vol. 12, 2011, pp. 219-258
Cited by Sources:
Comments - Policy