Comptes Rendus
Du combustible nucléaire aux déchets : recherches actuelles/From nuclear fuels to waste: current research
Swedish containers for disposal of spent nuclear fuel and radioactive waste
[Le concept suédois pour stockage définitif des déchets nucléaires]
Comptes Rendus. Physique, Volume 3 (2002) no. 7-8, pp. 903-913.

Le but d'un site de stockage profond est de pouvoir isoler les déchets radioactifs de l'homme et son milieu environnant. Si le processus d'isoler ces déchets est, pour une raison on une autre, interrompu, les substances radioactives devraient être retardeés. Le conteneur est l'une de plusieurs barrières qui fonctionnent de façon à isoler les déchets et dans le cas échéant retarder le transport des nuclides radioactifs. Pour les déchets de faibles et moyennes activités, quatre conteneurs standardisés en métal et en ciment sont selectionnés. Les combustibles usés sont placés dans un conteneur en fonte pour fournir une résistance mécanique, le tout sera en suite placé dans un conteneur en cuivre qui résiste à la corrosion. Le conteneur sera placé dans un stockage profond qui est en cours d'être sélectionné en Suède. Cet article est particulièrement centré sur la mise au point des conteneurs.

The purpose of a disposal is to isolate the radioactive waste from man and the environment. If the isolation is broken, the leakage and transport of radioactive substances must be retarded. The package is one of several barriers, used to achieve these two main functions. For short-lived, low and intermediate level waste four standard containers of steel and concrete are used. Spent fuel will be placed in a canister consisting of a pressure-bearing insert of cast nodular iron and an outer corrosion barrier of copper before it is deposited in a deep geological repository. In particular, the development of a high integrity copper canister for the isolation of spent nuclear fuel is described in this paper.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-0705(02)01378-6
Keywords: radioactive waste packages, spent fuel canister, deep geologic repository, encapsulation, sealing of canister, testing of canister
Mots-clés : conteneurs des déchets radioactifs, conteneur pour les combustibles usés, stockage profond dans une formation géologique, mise en conteneur, soudage des conteneurs, control des conteneurs

Tommy Hedman 1 ; Anders Nyström 1 ; Claes Thegerström 1

1 Swedish Nuclear Fuel and Waste Management Co (SKB), PO Box 5864, 10240 Stockholm, Sweden
@article{CRPHYS_2002__3_7-8_903_0,
     author = {Tommy Hedman and Anders Nystr\"om and Claes Thegerstr\"om},
     title = {Swedish containers for disposal of spent nuclear fuel and radioactive waste},
     journal = {Comptes Rendus. Physique},
     pages = {903--913},
     publisher = {Elsevier},
     volume = {3},
     number = {7-8},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01378-6},
     language = {en},
}
TY  - JOUR
AU  - Tommy Hedman
AU  - Anders Nyström
AU  - Claes Thegerström
TI  - Swedish containers for disposal of spent nuclear fuel and radioactive waste
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 903
EP  - 913
VL  - 3
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01378-6
LA  - en
ID  - CRPHYS_2002__3_7-8_903_0
ER  - 
%0 Journal Article
%A Tommy Hedman
%A Anders Nyström
%A Claes Thegerström
%T Swedish containers for disposal of spent nuclear fuel and radioactive waste
%J Comptes Rendus. Physique
%D 2002
%P 903-913
%V 3
%N 7-8
%I Elsevier
%R 10.1016/S1631-0705(02)01378-6
%G en
%F CRPHYS_2002__3_7-8_903_0
Tommy Hedman; Anders Nyström; Claes Thegerström. Swedish containers for disposal of spent nuclear fuel and radioactive waste. Comptes Rendus. Physique, Volume 3 (2002) no. 7-8, pp. 903-913. doi : 10.1016/S1631-0705(02)01378-6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01378-6/

[1] Integrated account of method, site selection and programme prior to the site investigations phase, SKB Technical Report TR-01-03, pp. 35–37

[2] M. Skogsberg, Annual report, Low level and intermediate level waste in Sweden 1996, SKB Report R-97-14 (in Swedish)

[3] The Swedish Corrosion Research Institute, Copper as an encapsulation material for unreprocessed nuclear waste—evaluation from the viewpoint of corrosion, KBS TR 90

[4] L. Werme, Design premises for canister for spent nuclear fuel, SKB Technical Report TR-98-08

[5] F. King, L. Ahonen, C. Taxén, U. Vuorinen, L. Werme, Copper corrosion under expected conditions in a deep geologig repository, SKB Technical Report TR-01-23

[6] C.-G. Andersson, Development of fabrication technique for copper canisters with cast iron inserts, Status report, August 2001, SKB Report R-01-39 (in Swedish)

[7] SR 97—Post-closure safety. Main Report, SKB Technical Report TR-99-06

[8] M.W. Guinan, Radiation effects in spent nuclear fuel canisters, SKB Technical Report TR-01-32

[9] RD & D Programme 2001, Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, SKB Technical Report TR-01-30

[10] Nuclear Waste Containment Materials, Papers related to the SKB waste disposal programme presented at the Materials Research Society Spring Meeting, April 19, 2001, SKB Technical Report 01-25, 2001, Swedish Nuclear Fuel and Waste Management Co (SKB)

[11] L. Werme, P. Sellin, N. Kjellbert, Copper canisters for nuclear high level waste disposal, SKB Technical Report 92-26, 1992, Swedish Nuclear Fuel and Waste Management Co (SKB)

[12] A.E. Bond, A.R. Hoch, G.D. Jones, A.J. Tomczyk, R.M. Wiggin, W.J. Worraker, Assessment of spent fuel disposal canister. Assessment studies for a copper canister with cast steel inner component, SKB Technical Report 97-19, 1997, Swedish Nuclear Fuel and Waste Management Co (SKB)

[13] A.E. Milodowski, M.T. Styles, V.L. Hards, A natural analogue for copper waste canisters: The copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom, SKB Technical Report 00-11, 2000, Swedish Nuclear Fuel and Waste Management Co (SKB)

[14] W.H. Bowyer, A study of defects which might arise in the copper steel canister, Statens Kärnkraftinspection (The Swedish Nuclear Power Inspectorate), Stockholm, Sweden, SKI Report 00 : 19, May 1999

[15] T. Hicks, A. Prescott, A study of criticality in a spent fuel repository based on current canister design, Statens Kärnkraftinspection (The Swedish Nuclear Power Inspectorate), Stockholm, Sweden, SKI Report 00 : 13, May 1999

[16] R. Forsyth, Spent nuclear fuel. A review of properties of possible relevance to corrosion processes, SKB Technical Report 95-23, 1995, Swedish Nuclear Fuel and Waste Management Co (SKB)

[17] H.-P. Hermansson, S. Eriksson, Corrosion of copper canister in the repository environment, Statens Kärnkraftinspection (The Swedish Nuclear Power Inspectorate), Stockholm, Sweden, SKI Report 99 : 52, 1999

[18] I. Puigdomènech, C. Taxén, Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions, SKB Technical Report 00-13, 1998, Swedish Nuclear Fuel and Waste Management Co (SKB)

[19] B. Rosborg, The resistance of copper canister to stress corrosion cracking, Studsvik Material AB, STUDSVIK/M-98/100, December 1998

[20] E. Arilahti, M. Bojinov, K. Mäkelä, T. Laitinen, T. Saario, Stress corrosion cracking investigation of copper in groundwater with ammonium ions, Posiva Working Report 2000-46, Posiva Oy, Helsinki, Finland

[21] H. Andersson, F. Seitisleam, R. Sandström, Influence of phosphorus and sulphur as well as grain size on creep in pure copper, SKB Technical Report 99-39, 1999, Swedish Nuclear Fuel and Waste Management Co (SKB)

[22] N.R. Smart, D.J. Blackwood, L. Werme, The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters, SKB Technical Report 01-22, 2001, Swedish Nuclear Fuel and Waste Management Co (SKB)

[23] D.J. Blackwood, C.C. Naish, The effect of galvanic coupling between the copper canister and the carbon steel inner canister on the corrosion resistance of the advanced cold process canister, SKB PR 95-04, 1995, Swedish Nuclear Fuel and Waste Management Co (SKB)

[24] K. Spahiu, P. Sellin, Spent fuel alteration dissolution and the influence of near field hydrogen, in: K. Hart (Ed.), Scientific Basis for Radioactive Management, Material Research Society Symposium Proceedings

[25] P. Wersin, K. Spahiu, J. Bruno, Kinetic modelling of bentonite-canister interaction. Long-term predictions of copper canisters corrosion under oxic and anoxic conditions, SKB Technical Report 94-25, 1994, Swedish Nuclear Fuel and Waste Management Co (SKB)

[26] R.S. Wikramaratna, M. Goodfield, W.R. Rodwell, P.J. Nash, P.J. Agg, A preliminary assessment of gas migration from the copper/steel canister, SKB Technical Report 93-31, 1993, Swedish Nuclear Fuel and Waste Management Co (SKB)

[27] H. Takase, S. Benbow, P. Grindrod, Mechanical failure of SKB spent fuel canisters. Mathematical modelling and scoping calculations, SKB Technical Report 99-34, 1999, Swedish Nuclear Fuel and Waste Management Co (SKB)

[28] U. Staahlberg, Manufacturing methods for canisters, Statens Kärnkraftinspection (The Swedish Nuclear Power Inspectorate), Stockholm, Sweden, SKI Report 95 : 6, 1995

[29] K.R. Nightingale; A. Sanderson; C. Punshon; L.O. Werme Advances in EB technology for the fabrication and sealing of large scale copper canisters for high level nuclear waste burial, 6th International Conference on Welding and Melting by Electron and laser Beams, CISFEL 6, Vol. 1 (1998), pp. 323-330

[30] C.-G. Andersson, R.E. Andrews, Fabrication of containment canisters for nuclear waste by friction stir welding, Presented at the 1st International Symposium on Friction Stir Welding held at the Rockwell Science Center, Thousands Oaks, California, 14–16 June 1999. The proceedings are available as a CD-ROM from TWI, Cambridge, UK

[31] P. Wu, T. Stepinski, Inspection of copper canisters for spent nuclear fuel by means of Ultrasonic array System. Modelling, defect detection and grain noise estimation, SKB Technical Report 94-25, 1994, Swedish Nuclear Fuel and Waste Management Co (SKB)

  • Philipp Selzer; Haibing Shao; Christoph Behrens; Christoph Lehmann; Robert Seydewitz; Renchao Lu; Phillip Kreye; Wolfram Rühaak; Olaf Kolditz The value of simplified models of radionuclide transport for the safety assessment of nuclear waste repositories: A benchmark study, Journal of Contaminant Hydrology, Volume 267 (2024), p. 104417 | DOI:10.1016/j.jconhyd.2024.104417
  • Simeon A. Babalola; Samik Dutta; Himadri Roy; Naresh C. Murmu Deciphering the interdependent impact of process parameters in friction stir welding – Part II: extracting generalization insights from the critical review of pure metal welds, Materials and Manufacturing Processes, Volume 39 (2024) no. 5, p. 620 | DOI:10.1080/10426914.2023.2290242
  • Evgeny V. Nazarchuk; Vladislav V. Gurzhiy; Yana G. Tagirova; Dmitri O. Charkin; Maria G. Krzhizhanovskaya; Anatoly V. Kasatkin; Oleg V. Eremin High-Temperature Crystal Chemistry of Meta-Autunite Group Minerals: Metatorbernite, Cu(UO2)2(PO4)2(H2O)8 and Metazeunerite, Cu(UO2)2(AsO4)2(H2O)8, Crystals, Volume 13 (2023) no. 12, p. 1688 | DOI:10.3390/cryst13121688
  • Tae Ho Yun; Taeyong Kim; Seunghyun Kim; Jisoo Kim Investigation of Corrosion Behavior of Oxygen-Free Copper Canisters in Groundwater Chemistry of Deep Geological Repositories, Materials, Volume 17 (2023) no. 1, p. 74 | DOI:10.3390/ma17010074
  • De'an Sun; Luqiang He; Xiangyun Zhou; Yongjun Qin Temperature field of multi-barrier with gap layer in nuclear waste repository, Nuclear Engineering and Design, Volume 414 (2023), p. 112588 | DOI:10.1016/j.nucengdes.2023.112588
  • Gha-Young Kim; Junhyuk Jang; Minsoo Lee; Mihye Kong; Seok Yoon Corrosion behaviors of SS316L, Ti-Gr.2, Alloy 22 and Cu in KURT groundwater solutions for geological deep disposal, Nuclear Engineering and Technology, Volume 54 (2022) no. 12, p. 4474 | DOI:10.1016/j.net.2022.07.024
  • Gha-Young Kim; Junhyuk Jang; Minsoo Lee; Jin-Seop Kim; Jariah Mohamad Juoi Effect of Chloride Ions on Electrochemical Behavior of Canister Materials, Science and Technology of Nuclear Installations, Volume 2022 (2022), p. 1 | DOI:10.1155/2022/8577144
  • KwanSeong Jeong; ManSoo Choi Conceptual design of a container with drainage system for treating and transporting the radioactive wastes under water during decommissioning of nuclear facilities, Annals of Nuclear Energy, Volume 154 (2021), p. 108110 | DOI:10.1016/j.anucene.2020.108110
  • Fan Zhang; Cem Örnek; Min Liu; Timo Müller; Ulrich Lienert; Vilma Ratia-Hanby; Leena Carpén; Elisa Isotahdon; Jinshan Pan Corrosion-induced microstructure degradation of copper in sulfide-containing simulated anoxic groundwater studied by synchrotron high-energy X-ray diffraction and ab-initio density functional theory calculation, Corrosion Science, Volume 184 (2021), p. 109390 | DOI:10.1016/j.corsci.2021.109390
  • Ashley I. Marsh; Laurence G. Williams; James A. Lawrence The important role and performance of engineered barriers in a UK geological disposal facility for higher activity radioactive waste, Progress in Nuclear Energy, Volume 137 (2021), p. 103736 | DOI:10.1016/j.pnucene.2021.103736
  • Yifeng Wang; Teklu Hadgu Enhancement of Thermal Conductivity of Bentonite Buffer Materials with Copper Wires/Meshes for High-Level Radioactive Waste Disposal, Nuclear Technology, Volume 206 (2020) no. 10, p. 1584 | DOI:10.1080/00295450.2019.1704577
  • Panagiotis Misaelides Clay minerals and zeolites for radioactive waste immobilization and containment, Modified Clay and Zeolite Nanocomposite Materials (2019), p. 243 | DOI:10.1016/b978-0-12-814617-0.00004-9
  • Ewa A. Dzik; Haylie L. Lobeck; Lei Zhang; Peter C. Burns High-temperature calorimetric measurements of thermodynamic properties of uranyl arsenates of the meta-autunite group, Chemical Geology, Volume 493 (2018), p. 353 | DOI:10.1016/j.chemgeo.2018.06.009
  • Maité Ochoa; Martín A. Rodríguez; Silvia B. Farina Corrosion of High Purity Copper in Solutions Containing NaCl, Na2SO4 and NaHCO3 at Different Temperatures, Procedia Materials Science, Volume 9 (2015), p. 460 | DOI:10.1016/j.mspro.2015.05.017
  • Florent Tocino; Stéphanie Szenknect; Adel Mesbah; Nicolas Clavier; Nicolas Dacheux Dissolution of uranium mixed oxides: The role of oxygen vacancies vs the redox reactions, Progress in Nuclear Energy, Volume 72 (2014), p. 101 | DOI:10.1016/j.pnucene.2013.09.014
  • Fanny Cretaz; Stéphanie Szenknect; Nicolas Clavier; Pierre Vitorge; Adel Mesbah; Michael Descostes; Christophe Poinssot; Nicolas Dacheux Solubility properties of synthetic and natural meta-torbernite, Journal of Nuclear Materials, Volume 442 (2013) no. 1-3, p. 195 | DOI:10.1016/j.jnucmat.2013.08.037
  • Hassan A. Alsaadi, 2012 First National Conference for Engineering Sciences (FNCES 2012) (2012), p. 1 | DOI:10.1109/nces.2012.6740484
  • Hamzah Ssemakula; Ulf Ståhlberg; Kent Öberg Close-die forging of large Cu-lids by a method of low force requirement, Journal of Materials Processing Technology, Volume 178 (2006) no. 1-3, p. 119 | DOI:10.1016/j.jmatprotec.2006.02.021
  • H. Meziani Gas permeability measurements of cement-based materials under hydrostatic test conditions using a low-transient method, Magazine of Concrete Research, Volume 58 (2006) no. 8, p. 489 | DOI:10.1680/macr.2006.58.8.489
  • Raghavan Subasri; Tadashi Shinohara; Kazuhiko Mori TiO[sub 2]-Based Photoanodes for Cathodic Protection of Copper, Journal of The Electrochemical Society, Volume 152 (2005) no. 3, p. B105 | DOI:10.1149/1.1856912
  • Raghavan SUBASRI; Tadashi SHINOHARA Application of the photoeffect in TiO2 for cathodic protection of copper, Electrochemistry, Volume 72 (2004) no. 12, p. 880 | DOI:10.5796/electrochemistry.72.880

Cité par 21 documents. Sources : Crossref

Commentaires - Politique