We propose a new nonlinear shell model of Koiter's type, i.e. one that combines membrane and flexural strains, which can be used in the case where the middle surface of the undeformed shell is “almost spherical”, in the sense that its Gaussian curvature and mean curvature satisfy , where 2ε denotes the thickness of the shell.
Nous proposons un nouveau modèle non linéaire de coques du type de Koiter, c'est-à-dire combinant les déformations membranaires et en flexion, qui peut être utilisé lorsque la surface moyenne de la coque non déformée est « presque sphérique », au sens que sa courbure gaussiene et sa courbure moyenne satisfont , où 2ε désigne l'épaisseur de la coque.
Accepted:
Published online:
Philippe G. Ciarlet 1; Cristinel Mardare 2
@article{CRMATH_2016__354_12_1241_0, author = {Philippe G. Ciarlet and Cristinel Mardare}, title = {A mathematical model of {Koiter's} type for a nonlinearly elastic {\textquotedblleft}almost spherical{\textquotedblright} shell}, journal = {Comptes Rendus. Math\'ematique}, pages = {1241--1247}, publisher = {Elsevier}, volume = {354}, number = {12}, year = {2016}, doi = {10.1016/j.crma.2016.10.011}, language = {en}, }
TY - JOUR AU - Philippe G. Ciarlet AU - Cristinel Mardare TI - A mathematical model of Koiter's type for a nonlinearly elastic “almost spherical” shell JO - Comptes Rendus. Mathématique PY - 2016 SP - 1241 EP - 1247 VL - 354 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2016.10.011 LA - en ID - CRMATH_2016__354_12_1241_0 ER -
Philippe G. Ciarlet; Cristinel Mardare. A mathematical model of Koiter's type for a nonlinearly elastic “almost spherical” shell. Comptes Rendus. Mathématique, Volume 354 (2016) no. 12, pp. 1241-1247. doi : 10.1016/j.crma.2016.10.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.011/
[1] Existence theorem for a nonlinear elliptic shell model, J. Elliptic Parabolic Eqs., Volume 1 (2015), pp. 31-48
[2] Mathematical Elasticity, Volume III: Theory of Shells, North-Holland, Amsterdam, 2000
[3] An Introduction to Differential Geometry with Applications to Elasticity, Springer, Dordrecht, The Netherlands, 2005
[4] P.G. Ciarlet, C. Mardare, A well-posed nonlinear model of Koiter's type for elliptic shells, in preparation.
[5] Justification of the two-dimensional equations of a linearly elastic shallow shell, Commun. Pure Appl. Math., Volume 45 (1992), pp. 327-360
[6] A Course in Differential Geometry, Springer, Berlin, 1978
[7] On the nonlinear theory of thin elastic shells, Proc. K. Ned. Akad. Wet. B, Volume 69 (1966), pp. 1-54
Cited by Sources:
Comments - Policy