In this note we give a generalization for the higher-order Hochschild cohomology and show that the secondary Hochschild cohomology is a particular case of this new construction.
Nous généralisons dans cette Note la cohomologie de Hochschild d'ordre supérieur et nous démontrons que la cohomologie de Hochschild secondaire est un cas particulier de cette nouvelle construction.
Accepted:
Published online:
Bruce R. Corrigan-Salter 1; Mihai D. Staic 2, 3
@article{CRMATH_2016__354_11_1049_0, author = {Bruce R. Corrigan-Salter and Mihai D. Staic}, title = {Higher-order and secondary {Hochschild} cohomology}, journal = {Comptes Rendus. Math\'ematique}, pages = {1049--1054}, publisher = {Elsevier}, volume = {354}, number = {11}, year = {2016}, doi = {10.1016/j.crma.2016.10.013}, language = {en}, }
Bruce R. Corrigan-Salter; Mihai D. Staic. Higher-order and secondary Hochschild cohomology. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1049-1054. doi : 10.1016/j.crma.2016.10.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.013/
[1] Chain functors and homology theories, Battelle Seattle Res. Center, Seattle, Wash., 1971 (Lect. Notes Math.), Volume vol. 249, Springer, Berlin (1971), pp. 1-12
[2] Coefficients for higher order Hochschild cohomology, Homol. Homotopy Appl., Volume 17 (2015) no. 1, pp. 111-120
[3] The cohomology structure of an associative ring, Ann. of Math. (2), Volume 78 (1963), pp. 267-288
[4] On the deformation of rings and algebras, Ann. of Math. (2), Volume 79 (1964), pp. 59-103
[5] Algebraic cohomology and deformation theory, Il Ciocco, 1986 (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume vol. 247, Kluwer Acad. Publ., Dordrecht (1988), pp. 11-264
[6] Higher order Hochschild cohomology, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 1–2, pp. 5-10
[7] Notes on factorization algebras, factorization homology and applications, Mathematical Aspects of Quantum Field Theories, Math. Phys. Stud., Springer, Cham, 2015, pp. 429-552
[8] Higher Hochschild homology, topological chiral homology and factorization algebras, Commun. Math. Phys., Volume 326 (2014) no. 3, pp. 635-686
[9] J. Laubacher, M.D. Staic, A. Stancu, Bar simplicial modules and secondary cyclic (co)homology, arXiv e-prints, May 2016.
[10] Formal Moduli of Algebraic Structures, Lect. Notes Math., vol. 754, Springer, Berlin, 1979
[11] Cyclic Homology, Grundlehren Math. Wiss., Fundamental Principles of Mathematical Sciences, vol. 301, Springer-Verlag, Berlin, 1992 (appendix E by María O. Ronco)
[12] Hodge decomposition for higher order Hochschild homology, Ann. Sci. Éc. Norm. Supér. (4), Volume 33 (2000) no. 2, pp. 151-179
[13] Secondary Hochschild cohomology, Algebr. Represent. Theory, Volume 19 (2016) no. 1, pp. 47-56
[14] Operations on the secondary Hochschild cohomology, Homol. Homotopy Appl., Volume 17 (2015) no. 1, pp. 129-146
[15] Deformation theory of modules, Commun. Algebra, Volume 33 (2005) no. 7, pp. 2351-2359
Cited by Sources:
Comments - Policy