Comptes Rendus
Algèbre, Géométrie et Topologie
BV-operators and the secondary Hochschild complex
Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1239-1258.

We introduce the notion of a BV-operator Δ={Δ n :V n V n-1 } n0 on a homotopy G-algebra V such that the Gerstenhaber bracket on H(V ) is determined by Δ in a manner similar to the BV-formalism. As an application, we produce a BV-operator on the cochain complex defining the secondary Hochschild cohomology of a symmetric algebra A over a commutative algebra B. In this case, we also show that the operator Δ corresponds to Connes’ operator.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.157
Classification : 16E40

Mamta Balodi 1 ; Abhishek Banerjee 1 ; Anita Naolekar 2

1 Department of Mathematics, Indian Institute of Science, Bangalore
2 Stat-Math Unit, Indian Statistical Institute, Bangalore
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_11-12_1239_0,
     author = {Mamta Balodi and Abhishek Banerjee and Anita Naolekar},
     title = {BV-operators and the secondary {Hochschild} complex},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1239--1258},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.157},
     language = {en},
}
TY  - JOUR
AU  - Mamta Balodi
AU  - Abhishek Banerjee
AU  - Anita Naolekar
TI  - BV-operators and the secondary Hochschild complex
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1239
EP  - 1258
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.157
LA  - en
ID  - CRMATH_2020__358_11-12_1239_0
ER  - 
%0 Journal Article
%A Mamta Balodi
%A Abhishek Banerjee
%A Anita Naolekar
%T BV-operators and the secondary Hochschild complex
%J Comptes Rendus. Mathématique
%D 2020
%P 1239-1258
%V 358
%N 11-12
%I Académie des sciences, Paris
%R 10.5802/crmath.157
%G en
%F CRMATH_2020__358_11-12_1239_0
Mamta Balodi; Abhishek Banerjee; Anita Naolekar. BV-operators and the secondary Hochschild complex. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1239-1258. doi : 10.5802/crmath.157. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.157/

[1] Mamta Balodi; Abhishek Banerjee; Anita Naolekar Weak comp algebras and cup products in secondary Hochschild cohomology of entwining structures (2020) (https://arxiv.org/abs/1909.05476v3)

[2] Bruce R. Corrigan-Salter; Mihai D. Staic Higher-order and secondary Hochschild cohomology, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 11, pp. 1049-1054 | DOI | MR | Zbl

[3] Murray Gerstenhaber The cohomology structure of an associative ring, Ann. Math., Volume 78 (1963), pp. 267-288 | DOI | MR

[4] Murray Gerstenhaber; Alexander A. Voronov Higher-order operations on the Hochschild complex, Funkts. Anal. Prilozh., Volume 29 (1995) no. 1, pp. 1-6 translation in Funct. Anal. Appl. 29 (1995), no. 1, p. 1-5 | MR | Zbl

[5] Murray Gerstenhaber; Alexander A. Voronov Homotopy G-algebras and moduli space operad, Int. Math. Res. Not., Volume 1995 (1995) no. 3, pp. 141-153 | DOI | MR | Zbl

[6] Yvette Kosmann-Schwarzbach Quasi, twisted, and all that...in Poisson geometry and Lie algebroid theory, The breadth of symplectic and Poisson geometry (Progress in Mathematics), Volume 232, Birkhäuser, 2005, pp. 363-389 | DOI | MR | Zbl

[7] Jean-Louis Koszul Crochet de Schouten–Nijenhuis et cohomologie, The mathematical heritage of Élie Cartan (Lyon, 1984) (Astérisque), Société Mathématique de France, 1985, pp. 257-271 | Numdam | Zbl

[8] Jacob Laubacher; Mihai D. Staic; Alin Stancu Bar simplicial modules and secondary cyclic (co)homology, J. Noncommut. Geom., Volume 12 (2018) no. 3, pp. 865-887 | DOI | MR | Zbl

[9] Mihai D. Staic Secondary Hochschild cohomology, Algebr. Represent. Theory, Volume 19 (2016) no. 1, pp. 47-56 | DOI | MR | Zbl

[10] Mihai D. Staic; Alin Stancu Operations on the secondary Hochschild cohomology, Homology Homotopy Appl., Volume 17 (2015) no. 1, pp. 129-146 | DOI | MR | Zbl

[11] Thomas Tradler The Batalin–Vilkovisky algebra on Hochschild cohomology induced by infinity inner products, Ann. Inst. Fourier, Volume 58 (2008) no. 7, pp. 2351-2379 | DOI | Numdam | MR | Zbl

Cité par Sources :

Commentaires - Politique