We introduce the notion of a BV-operator on a homotopy -algebra such that the Gerstenhaber bracket on is determined by in a manner similar to the BV-formalism. As an application, we produce a BV-operator on the cochain complex defining the secondary Hochschild cohomology of a symmetric algebra over a commutative algebra . In this case, we also show that the operator corresponds to Connes’ operator.
Révisé le :
Accepté le :
Publié le :
Mamta Balodi 1 ; Abhishek Banerjee 1 ; Anita Naolekar 2
@article{CRMATH_2020__358_11-12_1239_0, author = {Mamta Balodi and Abhishek Banerjee and Anita Naolekar}, title = {BV-operators and the secondary {Hochschild} complex}, journal = {Comptes Rendus. Math\'ematique}, pages = {1239--1258}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {11-12}, year = {2020}, doi = {10.5802/crmath.157}, language = {en}, }
TY - JOUR AU - Mamta Balodi AU - Abhishek Banerjee AU - Anita Naolekar TI - BV-operators and the secondary Hochschild complex JO - Comptes Rendus. Mathématique PY - 2020 SP - 1239 EP - 1258 VL - 358 IS - 11-12 PB - Académie des sciences, Paris DO - 10.5802/crmath.157 LA - en ID - CRMATH_2020__358_11-12_1239_0 ER -
Mamta Balodi; Abhishek Banerjee; Anita Naolekar. BV-operators and the secondary Hochschild complex. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1239-1258. doi : 10.5802/crmath.157. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.157/
[1] Weak comp algebras and cup products in secondary Hochschild cohomology of entwining structures (2020) (https://arxiv.org/abs/1909.05476v3)
[2] Higher-order and secondary Hochschild cohomology, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 11, pp. 1049-1054 | DOI | MR | Zbl
[3] The cohomology structure of an associative ring, Ann. Math., Volume 78 (1963), pp. 267-288 | DOI | MR
[4] Higher-order operations on the Hochschild complex, Funkts. Anal. Prilozh., Volume 29 (1995) no. 1, pp. 1-6 translation in Funct. Anal. Appl. 29 (1995), no. 1, p. 1-5 | MR | Zbl
[5] Homotopy -algebras and moduli space operad, Int. Math. Res. Not., Volume 1995 (1995) no. 3, pp. 141-153 | DOI | MR | Zbl
[6] Quasi, twisted, and all that...in Poisson geometry and Lie algebroid theory, The breadth of symplectic and Poisson geometry (Progress in Mathematics), Volume 232, Birkhäuser, 2005, pp. 363-389 | DOI | MR | Zbl
[7] Crochet de Schouten–Nijenhuis et cohomologie, The mathematical heritage of Élie Cartan (Lyon, 1984) (Astérisque), Société Mathématique de France, 1985, pp. 257-271 | Numdam | Zbl
[8] Bar simplicial modules and secondary cyclic (co)homology, J. Noncommut. Geom., Volume 12 (2018) no. 3, pp. 865-887 | DOI | MR | Zbl
[9] Secondary Hochschild cohomology, Algebr. Represent. Theory, Volume 19 (2016) no. 1, pp. 47-56 | DOI | MR | Zbl
[10] Operations on the secondary Hochschild cohomology, Homology Homotopy Appl., Volume 17 (2015) no. 1, pp. 129-146 | DOI | MR | Zbl
[11] The Batalin–Vilkovisky algebra on Hochschild cohomology induced by infinity inner products, Ann. Inst. Fourier, Volume 58 (2008) no. 7, pp. 2351-2379 | DOI | Numdam | MR | Zbl
Cité par Sources :
Commentaires - Politique