We prove that a linear growth graph has finitely many horofunctions. This provides a short and simple proof that any finitely generated infinite group of linear growth is virtually cyclic.
Nous montrons qu'un graphe à croissance linéaire admet un nombre fini d'horofonctions. Cela donne une preuve courte et simple que chaque groupe infini de type fini à croissance linéaire est virtuellement cyclique.
Accepted:
Published online:
Matthew C.H. Tointon 1; Ariel Yadin 2
@article{CRMATH_2016__354_12_1151_0, author = {Matthew C.H. Tointon and Ariel Yadin}, title = {Horofunctions on graphs of linear growth}, journal = {Comptes Rendus. Math\'ematique}, pages = {1151--1154}, publisher = {Elsevier}, volume = {354}, number = {12}, year = {2016}, doi = {10.1016/j.crma.2016.10.015}, language = {en}, }
Matthew C.H. Tointon; Ariel Yadin. Horofunctions on graphs of linear growth. Comptes Rendus. Mathématique, Volume 354 (2016) no. 12, pp. 1151-1154. doi : 10.1016/j.crma.2016.10.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.015/
[1] Groups of polynomial growth and expanding maps, Publ. Math. IHES, Volume 53 (1981), pp. 53-73
[2] On Representatives of Subsets, J. Lond. Math. Soc., Volume 10 (1935), pp. 26-30
[3] A bound for groups of linear growth, Arch. Math., Volume 48 (1987), pp. 100-104
[4] Groupes et semi-groupes à croissance linéaire, C. R. Acad. Sci. Paris, Ser. I, Volume 273 (1971), pp. 212-214
[5] Ergodic theorems for noncommuting random products http://www.unige.ch/math/folks/karlsson/wroclawtotal.pdf (lecture notes)
[6] An effective bound for groups of linear growth, Arch. Math., Volume 42 (1984), pp. 391-396
[7] The action of a nilpotent group on its horofunction boundary has finite orbits, Groups Geom. Dyn., Volume 5 (2011), pp. 189-206
Cited by Sources:
Comments - Policy