Comptes Rendus
Combinatorics/Geometry
Harmonic-counting measures and spectral theory of lens spaces
Comptes Rendus. Mathématique, Volume 354 (2016) no. 12, pp. 1145-1150.

In this article, associated with each lattice TZn, the concept of a harmonic-counting measure νT on a sphere Sn1 is introduced and is applied to determine the asymptotic behavior of the cardinality of the set of independent eigenfunctions of the Laplace–Beltrami operator on a lens space L corresponding to the elements of the associated lattice T of L lying in a cone.

Dans cette Note, on associe à tout réseau TZn une mesure de comptage harmonique νT sur la sphère Sn1. On l'utilise pour déterminer le comportement asymptotique du cardinal d'un ensemble de fonctions propres indépendantes de l'opérateur de Laplace–Beltrami sur un espace lenticulaire L, correspondant aux éléments du réseau T de L appartenant à un cône.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.10.016

Hossein Mohades 1; Bijan Honari 1

1 Faculty of Mathematics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., 15914, Tehran, Iran
@article{CRMATH_2016__354_12_1145_0,
     author = {Hossein Mohades and Bijan Honari},
     title = {Harmonic-counting measures and spectral theory of lens spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1145--1150},
     publisher = {Elsevier},
     volume = {354},
     number = {12},
     year = {2016},
     doi = {10.1016/j.crma.2016.10.016},
     language = {en},
}
TY  - JOUR
AU  - Hossein Mohades
AU  - Bijan Honari
TI  - Harmonic-counting measures and spectral theory of lens spaces
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 1145
EP  - 1150
VL  - 354
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2016.10.016
LA  - en
ID  - CRMATH_2016__354_12_1145_0
ER  - 
%0 Journal Article
%A Hossein Mohades
%A Bijan Honari
%T Harmonic-counting measures and spectral theory of lens spaces
%J Comptes Rendus. Mathématique
%D 2016
%P 1145-1150
%V 354
%N 12
%I Elsevier
%R 10.1016/j.crma.2016.10.016
%G en
%F CRMATH_2016__354_12_1145_0
Hossein Mohades; Bijan Honari. Harmonic-counting measures and spectral theory of lens spaces. Comptes Rendus. Mathématique, Volume 354 (2016) no. 12, pp. 1145-1150. doi : 10.1016/j.crma.2016.10.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.016/

[1] I. Chavel Eigenvalues in Riemannian Geometry, vol. 115, Academic Press, 1984

[2] P.L. Clark Geometry of numbers with applications to number theory www.math.uga/edu/pete/geometryofnumbers.pdf (Notes available at:)

[3] M. Duchin; S. Lelièvre; C. Mooney The geometry of spheres in free Abelian groups, Geom. Dedic., Volume 161 (2012) no. 1

[4] E. Ehrhart Sur les polyèdres rationnels homothétiques à n dimensions, C. R. Acad. Sci. Paris, Volume 254 (1962), pp. 616-618

[5] A. Ikeda On the spectrum of a Riemannian manifold of positive constant curvature, Osaka J. Math., Volume 17 (1980) no. 1, pp. 75-93

[6] A. Ikeda, Riemannian manifolds p-isospectral but not p+1-isospectral, in: Geometry of Manifolds (Matsumoto, 1988), Perspect. Math., vol. 8, 1989, pp. 383–417.

[7] E.A. Lauret Spectra of orbifolds with cyclic fundamental groups, Ann. Glob. Anal. Geom., Volume 50 (2016), pp. 1-28

[8] E.A. Lauret; R.J. Miatello; J.P. Rossetti Spectra of lens spaces from 1-norm spectra of congruence lattices, Int. Math. Res. Not. IMRN (2016) no. 4, pp. 1054-1089

[9] H. Mohades; B. Honari On a relation between spectral theory of lens spaces and Ehrhart theory, 2016 | arXiv

[10] R.P. Stanley Decompositions of rational convex polytope, Ann. Discrete Math., Volume 6 (1980), pp. 333-342

Cited by Sources:

Comments - Politique