In this article, associated with each lattice , the concept of a harmonic-counting measure on a sphere is introduced and is applied to determine the asymptotic behavior of the cardinality of the set of independent eigenfunctions of the Laplace–Beltrami operator on a lens space L corresponding to the elements of the associated lattice T of L lying in a cone.
Dans cette Note, on associe à tout réseau une mesure de comptage harmonique sur la sphère . On l'utilise pour déterminer le comportement asymptotique du cardinal d'un ensemble de fonctions propres indépendantes de l'opérateur de Laplace–Beltrami sur un espace lenticulaire L, correspondant aux éléments du réseau T de L appartenant à un cône.
Accepted:
Published online:
Hossein Mohades 1; Bijan Honari 1
@article{CRMATH_2016__354_12_1145_0, author = {Hossein Mohades and Bijan Honari}, title = {Harmonic-counting measures and spectral theory of lens spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {1145--1150}, publisher = {Elsevier}, volume = {354}, number = {12}, year = {2016}, doi = {10.1016/j.crma.2016.10.016}, language = {en}, }
Hossein Mohades; Bijan Honari. Harmonic-counting measures and spectral theory of lens spaces. Comptes Rendus. Mathématique, Volume 354 (2016) no. 12, pp. 1145-1150. doi : 10.1016/j.crma.2016.10.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.016/
[1] Eigenvalues in Riemannian Geometry, vol. 115, Academic Press, 1984
[2] Geometry of numbers with applications to number theory www.math.uga/edu/pete/geometryofnumbers.pdf (Notes available at:)
[3] The geometry of spheres in free Abelian groups, Geom. Dedic., Volume 161 (2012) no. 1
[4] Sur les polyèdres rationnels homothétiques à n dimensions, C. R. Acad. Sci. Paris, Volume 254 (1962), pp. 616-618
[5] On the spectrum of a Riemannian manifold of positive constant curvature, Osaka J. Math., Volume 17 (1980) no. 1, pp. 75-93
[6] A. Ikeda, Riemannian manifolds p-isospectral but not -isospectral, in: Geometry of Manifolds (Matsumoto, 1988), Perspect. Math., vol. 8, 1989, pp. 383–417.
[7] Spectra of orbifolds with cyclic fundamental groups, Ann. Glob. Anal. Geom., Volume 50 (2016), pp. 1-28
[8] Spectra of lens spaces from 1-norm spectra of congruence lattices, Int. Math. Res. Not. IMRN (2016) no. 4, pp. 1054-1089
[9] On a relation between spectral theory of lens spaces and Ehrhart theory, 2016 | arXiv
[10] Decompositions of rational convex polytope, Ann. Discrete Math., Volume 6 (1980), pp. 333-342
Cited by Sources:
Comments - Politique