[Compacité de l'opérateur de Hardy pondéré entre espaces d'exposant variable]
In this paper, we prove a necessary and sufficiency condition for the weighted Hardy operator
Dans cette Note, nous prouvons une condition nécessaire et suffisante pour que l'opérateur de Hardy pondéré
Accepté le :
Publié le :
Farman Mamedov 1, 2 ; Sayali Mammadli 1
@article{CRMATH_2017__355_3_325_0, author = {Farman Mamedov and Sayali Mammadli}, title = {Compactness for the weighted {Hardy} operator in variable exponent spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {325--335}, publisher = {Elsevier}, volume = {355}, number = {3}, year = {2017}, doi = {10.1016/j.crma.2016.12.010}, language = {en}, }
Farman Mamedov; Sayali Mammadli. Compactness for the weighted Hardy operator in variable exponent spaces. Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 325-335. doi : 10.1016/j.crma.2016.12.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.12.010/
[1] Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., Volume 156 (2011), pp. 121-140
[2] Weighted Hardy modular inequalities in variable
[3] Weighted weak modular and norm inequalities for the Hardy operator in variable
[4] Hardy Type Inequality in weighted variable exponent spaces and applications to
[5] Regularity for double phase variational problems, Arch. Ration. Mech. Anal., Volume 215 (2015), pp. 443-496
[6] Variable Lebesgue Spaces, Foundations and Harmonic Analysis, Birkhauser, Basel, Switzerland, 2013
[7] On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces, Rev. Mat. Complut., Volume 25 (2012) no. 2, pp. 335-367
[8] Hardy inequality in variable exponent Lebesgue spaces, Fract. Calc. Appl. Anal., Volume 10 (2007) no. 1, pp. 1-17
[9] Lebesgue and Sobolev Spaces with Variable Exponents, Lect. Notes Math., vol. 2017, Springer, Heidelberg, Germany, 2011
[10] Linear Operators: General Theory, Part 1, Wiley, 1958
[11] Compactness of Hardy-type integral operators in weighted Banach function spaces, Stud. Math., Volume 109 (1994) no. 1, pp. 73-90
[12] Bounded and Compact Integral Operators, Mathematics and Its Applications, vol. 543, Kluwer Academic Publishers, Dordrecht, 2002
[13] On the boundedness and compactness of the weighted Hardy operators in spaces
[14] An equivalence theorem for integral conditions related to Hardy's operator, Real Anal. Exch., Volume 29 (2003/2004) no. 2, pp. 867-880
[15] Hardy's inequality in variable exponent Sobolev spaces, Georgian Math. J., Volume 12 (2005) no. 3, pp. 431-442
[16] On boundedness of weighted Hardy operator in
[17] Integral Operators in Non-standard Function Spaces: Vol. I: Variable Exponent Lebesgue and Amalgam Spaces, Operator Theory: Advances and Applications, vol. 248, Birkhauser, 2016 (i–xx, 1–567 pp)
[18] Maximal and fractional operators in weighted
[19] W.A.J. Luxemburg, Banach function spaces, Thesis, Delft, 1995.
[20] On Hardy type inequality in variable exponent Lebesgue space
[21] On a weighted inequality of Hardy type in spaces
[22] On a Hardy type general weighted inequality in spaces
[23] A necessary and sufficient condition for Hardy's operator in
[24] On equivalent conditions for the general weighted Hardy type inequality in space
[25] A necessary and sufficient condition for Hardy's operator in the variable Lebesgue space, Abstr. Appl. Anal., Volume 2014 (2014) (7 pages)
[26] Boundedness criterions for the Hardy operator in weighted
[27] Regularity for elliptic equations with general growth conditions, J. Differ. Equ., Volume 105 (1993), pp. 296-333
[28] Hardy's inequality in power-type weighted
[29] Weighted kernel operators in
[30] Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983
[31] An equivalence theorem for some integral conditions with general measures related to Hardy's inequality, J. Math. Anal. Appl., Volume 326 (2007) no. 1, pp. 398-413
[32] Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics, Chapman and Hall/CRC, 2015
[33] Hardy inequality in variable Lebesgue spaces, Ann. Acad. Sci. Fenn., Volume 34 (2009) no. 1, pp. 279-289
[34] Functional Analysis, McGraw-Hill, New York, 1973
[35] Electrorheological Fluids Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000
[36] Hardy inequality in the generalized Lebesgue spaces, Fract. Calc. Appl. Anal., Volume 6 (2003) no. 4, pp. 355-362
[37] Hardy–Littlewood–Stein–Weiss inequality in the Lebesgue spaces with variable exponent, Fract. Calc. Appl. Anal., Volume 6 (2003) no. 4, pp. 421-440
[38] On compactness of operators in variable exponent Lebesgue spaces, Oper. Theory, Adv. Appl., Volume 202 (2010), pp. 497-508
[39] On some variational problems, J. Math. Phys., Volume 5 (1997), pp. 105-116 (Russian)
- On compact and bounded embedding in variable exponent Sobolev spaces and its applications, Arabian Journal of Mathematics, Volume 9 (2020) no. 2, pp. 401-414 | DOI:10.1007/s40065-019-00268-8 | Zbl:1442.35140
- On a new characterization of some class nonlinear eigenvalue problem, Advances in Mathematical Physics, Volume 2019 (2019), p. 7 (Id/No 7865303) | DOI:10.1155/2019/7865303 | Zbl:7073506
- Two-weighted Hardy operators in
spaces and applications, Studia Mathematica, Volume 249 (2019) no. 2, pp. 143-162 | DOI:10.4064/sm180204-20-8 | Zbl:1521.47080
Cité par 3 documents. Sources : zbMATH
Commentaires - Politique