Comptes Rendus
Géométrie et Topologie
Addendum to the paper: Compact embedded minimal surfaces in the Berger sphere
[Addendum à l’article : Surfaces minimales compactes intégrées dans la sphère Berger]
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 257-264.

Nous construisons une famille à deux paramètres discrets de surfaces minimales compactes plongées dans la sphère de Berger qui peut être considérée comme l’analogue de l’hélicoïde de Karcher-Scherk.

We construct a two discrete parameter family of compact minimal surfaces embedded in the Berger sphere which may be considered as the analogue of the helicoidal Karcher-Scherk surfaces.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.403

Heayong Shin 1 ; Young Wook Kim 2 ; Sung-Eun Koh 3 ; Hyung Yong Lee 2 ; Seong-Deog Yang 2

1 Department of Mathematics, Chung-Ang University, Seoul 06974, Korea
2 Department of Mathematics, Korea University, Seoul 02841, Korea
3 Department of Mathematics, Konkuk University, Seoul 05029, Korea
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_257_0,
     author = {Heayong Shin and Young Wook Kim and Sung-Eun Koh and Hyung Yong Lee and Seong-Deog Yang},
     title = {Addendum to the paper: {Compact} embedded minimal surfaces in the {Berger} sphere},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {257--264},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.403},
     language = {en},
}
TY  - JOUR
AU  - Heayong Shin
AU  - Young Wook Kim
AU  - Sung-Eun Koh
AU  - Hyung Yong Lee
AU  - Seong-Deog Yang
TI  - Addendum to the paper: Compact embedded minimal surfaces in the Berger sphere
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 257
EP  - 264
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.403
LA  - en
ID  - CRMATH_2023__361_G1_257_0
ER  - 
%0 Journal Article
%A Heayong Shin
%A Young Wook Kim
%A Sung-Eun Koh
%A Hyung Yong Lee
%A Seong-Deog Yang
%T Addendum to the paper: Compact embedded minimal surfaces in the Berger sphere
%J Comptes Rendus. Mathématique
%D 2023
%P 257-264
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.403
%G en
%F CRMATH_2023__361_G1_257_0
Heayong Shin; Young Wook Kim; Sung-Eun Koh; Hyung Yong Lee; Seong-Deog Yang. Addendum to the paper: Compact embedded minimal surfaces in the Berger sphere. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 257-264. doi : 10.5802/crmath.403. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.403/

[1] (https://minimalsurfaces.blog/home/repository/singly-periodic/ helicoidal-karcher-scherk-surfaces/)

[2] III Meeks; Shing-Tung Yau The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z., Volume 179 (1982), pp. 151-168 | DOI | MR | Zbl

[3] Heayong Shin; Young Wook Kim; Sung-Eun Koh; Hyung Yong Lee; Seong-Deog Yang Ruled minimal surfaces in the Berger sphere, Differ. Geom. Appl., Volume 40 (2015), pp. 209-222 | DOI | MR | Zbl

[4] Heayong Shin; Young Wook Kim; Sung-Eun Koh; Hyung Yong Lee; Seong-Deog Yang Compact embedded minimal surfaces in the Berger sphere, C. R. Acad. Sci. Paris, Volume 356 (2018) no. 3, pp. 333-339 | DOI | MR | Zbl

[5] Heayong Shin; Young Wook Kim; Sung-Eun Koh; Hyung Yong Lee; Seong-Deog Yang Schwarz’ CLP-surfaces in Nil 3 , Proc. Am. Math. Soc., Volume 147 (2019) no. 4, pp. 1677-1685 | DOI | Zbl

[6] Francisco Torralbo Compact minimal surfaces in the Berger spheres, Ann. Global Anal. Geom., Volume 41 (2012) no. 4, pp. 391-405 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique