Comptes Rendus
Differential geometry
Formality theorem for g-manifolds
[Théorème de formalité pour les g-variétés]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 582-589.

À toute g-variété M sont associées deux algèbres de Lie différentielles graduées tot(ΛgkTpoly(M)) et tot(ΛgkDpoly(M)), dont les cohomologies HCE(g,Tpoly(M)0Tpoly+1(M)) et HCE(g,Dpoly(M)dHDpoly+1(M)) sont des algèbres de Gerstenhaber. Nous obtenons un théorème de formalité pour les g-variétés : il existe un quasi-isomorphisme Φ:tot(ΛgkTpoly(M))tot(ΛgkDpoly(M)) d'algèbres L dont le premier « coefficient de Taylor » (1) est égal à l'application de Hochschild–Kostant–Rosenberg tordue par la racine carrée du cocycle de Todd de la g-variété M et (2) induit un isomorphisme d'algèbre de Gerstenhaber au niveau des cohomologies. Par conséquent, l'application de Hochschild–Kostant–Rosenberg tordue par la racine carrée de la classe de Todd de la g-variété M est un isomorphisme d'algèbres de Gerstenhaber de HCE(g,Tpoly(M)0Tpoly+1(M)) sur HCE(g,Dpoly(M)dHDpoly+1(M)).

With any g-manifold M are associated two dglas tot(ΛgkTpoly(M)) and tot(ΛgkDpoly(M)), whose cohomologies HCE(g,Tpoly(M)0Tpoly+1(M)) and HCE(g,Dpoly(M)dHDpoly+1(M)) are Gerstenhaber algebras. We establish a formality theorem for g-manifolds: there exists an L quasi-isomorphism Φ:tot(ΛgkTpoly(M))tot(ΛgkDpoly(M)) whose first ‘Taylor coefficient’ (1) is equal to the Hochschild–Kostant–Rosenberg map twisted by the square root of the Todd cocycle of the g-manifold M, and (2) induces an isomorphism of Gerstenhaber algebras on the level of cohomology. Consequently, the Hochschild–Kostant–Rosenberg map twisted by the square root of the Todd class of the g-manifold M is an isomorphism of Gerstenhaber algebras from HCE(g,Tpoly(M)0Tpoly+1(M)) to HCE(g,Dpoly(M)dHDpoly+1(M)).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.03.008

Hsuan-Yi Liao 1 ; Mathieu Stiénon 1 ; Ping Xu 1

1 Department of Mathematics, Pennsylvania State University, United States
@article{CRMATH_2017__355_5_582_0,
     author = {Hsuan-Yi Liao and Mathieu Sti\'enon and Ping Xu},
     title = {Formality theorem for $ \mathfrak{g}$-manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {582--589},
     publisher = {Elsevier},
     volume = {355},
     number = {5},
     year = {2017},
     doi = {10.1016/j.crma.2017.03.008},
     language = {en},
}
TY  - JOUR
AU  - Hsuan-Yi Liao
AU  - Mathieu Stiénon
AU  - Ping Xu
TI  - Formality theorem for $ \mathfrak{g}$-manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 582
EP  - 589
VL  - 355
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2017.03.008
LA  - en
ID  - CRMATH_2017__355_5_582_0
ER  - 
%0 Journal Article
%A Hsuan-Yi Liao
%A Mathieu Stiénon
%A Ping Xu
%T Formality theorem for $ \mathfrak{g}$-manifolds
%J Comptes Rendus. Mathématique
%D 2017
%P 582-589
%V 355
%N 5
%I Elsevier
%R 10.1016/j.crma.2017.03.008
%G en
%F CRMATH_2017__355_5_582_0
Hsuan-Yi Liao; Mathieu Stiénon; Ping Xu. Formality theorem for $ \mathfrak{g}$-manifolds. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 582-589. doi : 10.1016/j.crma.2017.03.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.03.008/

[1] M.F. Atiyah Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., Volume 85 (1957), pp. 181-207 (MR 0086359)

[2] D. Calaque; M. Van den Bergh Hochschild cohomology and Atiyah classes, Adv. Math., Volume 224 (2010) no. 5, pp. 1839-1889 (MR 2646112)

[3] Z. Chen; M. Stiénon; P. Xu From Atiyah classes to homotopy Leibniz algebras, Commun. Math. Phys., Volume 341 (2016) no. 1, pp. 309-349 (MR 3439229)

[4] V. Dolgushev Covariant and equivariant formality theorems, Adv. Math., Volume 191 (2005) no. 1, pp. 147-177 MR 2102846 (2006c:53101)

[5] M. Gerstenhaber The cohomology structure of an associative ring, Ann. of Math. (2), Volume 78 (1963), pp. 267-288 (MR 0161898)

[6] G. Hochschild; B. Kostant; A. Rosenberg Differential forms on regular affine algebras, Trans. Amer. Math. Soc., Volume 102 (1962), pp. 383-408 (MR 0142598)

[7] M. Kontsevich Deformation quantization of Poisson manifolds, Lett. Math. Phys., Volume 66 (2003) no. 3, pp. 157-216 MR 2062626 (2005i:53122)

[8] H. Liao; M. Stiénon; P. Xu Formality theorem and Kontsevich–Duflo type theorem for Lie pairs, 2016 (ArXiv e-prints) | arXiv

[9] K.C.H. Mackenzie Drinfeld doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids, Electron. Res. Announc. Amer. Math. Soc., Volume 4 (1998), pp. 74-87 (MR 1650045)

[10] R.A. Mehta; M. Stiénon; P. Xu The Atiyah class of a dg-vector bundle, C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015) no. 4, pp. 357-362 (MR 3319134)

[11] T. Mokri Matched pairs of Lie algebroids, Glasg. Math. J., Volume 39 (1997) no. 2, pp. 167-181 (MR 1460632)

[12] D.E. Tamarkin Operadic Proof of M. Kontsevich's Formality Theorem, The Pennsylvania State University, PA, USA, 1999 ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.) MR 2699544

Cité par Sources :

Research partially supported by NSF grants DMS-1406668 and DMS-1101827, and NSA grant H98230-14-1-0153.

Commentaires - Politique