[Une note sur la conjecture de Fröberg pour des formes de degrés égaux]
In this note we study ideals generated by generic forms in polynomial rings over any algebraicly closed field of characteristic zero. We prove for many cases that the
Dans cette note, nous étudions les idéaux générés par des formes génériques dans des anneaux de polynômes sur un champ algébriquement clos de caractéristique nulle. Nous montrons que, dans de nombreux cas, la
Accepté le :
Publié le :
Gleb Nenashev 1
@article{CRMATH_2017__355_3_272_0, author = {Gleb Nenashev}, title = {A note on {Fr\"oberg's} conjecture for forms of equal degrees}, journal = {Comptes Rendus. Math\'ematique}, pages = {272--276}, publisher = {Elsevier}, volume = {355}, number = {3}, year = {2017}, doi = {10.1016/j.crma.2017.01.011}, language = {en}, }
Gleb Nenashev. A note on Fröberg's conjecture for forms of equal degrees. Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 272-276. doi : 10.1016/j.crma.2017.01.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.011/
[1] Thin algebras of embedding dimension three, J. Algebra, Volume 100 (1986), pp. 235-259
[2] Série de Hilbert d'une algébre de polynômes quotient, J. Algebra, Volume 176 (1995), pp. 392-416
[3] An inequality for Hilbert series of graded algebras, Math. Scand., Volume 56 (1985), pp. 117-144
[4] The linear syzygies of generic forms, Commun. Algebra, Volume 15 (1987) no. 1–2, pp. 227-239
[5] Ideals of general forms and the ubiquity of the weak Lefschetz property, J. Pure Appl. Algebra, Volume 182 (2003) no. 1, pp. 79-107
[6] Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods, Volume 1 (1980), pp. 168-184
Cité par Sources :
Commentaires - Politique