This paper discusses the large-time behavior of solutions for a new Hall–MHD system in . Using the Fourier splitting method, we establish the upper bound of the time-decay rate in for weak solutions.
Cette Note traite du comportement à long terme des solutions d'un nouveau système d'équations magnétohydrodynamiques de Hall dans . Utilisant la méthode de décomposition de Fourier, nous donnons une borne supérieure du taux de décroissance en temps dans pour les solutions faibles.
Accepted:
Published online:
Xiaopeng Zhao 1, 2
@article{CRMATH_2017__355_3_310_0, author = {Xiaopeng Zhao}, title = {Decay of solutions to a new {Hall{\textendash}MHD} system in $ {\mathbb{R}}^{3}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {310--317}, publisher = {Elsevier}, volume = {355}, number = {3}, year = {2017}, doi = {10.1016/j.crma.2017.01.019}, language = {en}, }
Xiaopeng Zhao. Decay of solutions to a new Hall–MHD system in $ {\mathbb{R}}^{3}$. Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 310-317. doi : 10.1016/j.crma.2017.01.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.019/
[1] Poincaré's inequality and diffusive evolution equations, Adv. Difference Equ., Volume 14 (2009), pp. 241-260
[2] Characterization of solutions to dissipative systems with sharp algebraic decay, SIAM J. Math. Anal., Volume 48 (2016), pp. 1616-1633
[3] Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 31 (2014), pp. 555-565
[4] On the temporal decay for the Hall–magnetohydrodynamic equations, J. Differential Equations, Volume 255 (2013), pp. 3971-3982
[5] Stable numerical scheme for the magnetic induction equation with Hall effect (T. Li; S. Jiang, eds.), Hyperbolic Problems: Theory, Numerics and Applications, vol. 2, Higher Education Press, 2012, pp. 374-381
[6] Rapid magnetic reconnection in the Earth's magnetosphere mediated by whistler waves, Nature, Volume 410 (2001), pp. 557-560
[7] On blow-up criteria for a new Hall–MHD system, Appl. Math. Comput., Volume 274 (2016), pp. 20-24
[8] Regularity criteria for the incompressible Hall–MHD system, ZAMM Z. Angew. Math. Mech., Volume 95 (2015), pp. 1156-1160
[9] Asymptotic behavior of strong solutions to the 3D Navier–Stokes equations with a nonlinear damping term, Nonlinear Anal., Volume 75 (2012) no. 13, pp. 5002-5009
[10] Time decay rate for two 3D magnetohydrodynamics-α models, Math. Methods Appl. Sci., Volume 37 (2014) no. 6, pp. 838-845
[11] Hall magnetohydrodynamic reconnection: the geospace environment modeling challenge, J. Geophys. Res., Volume 106 (2001) no. A3, pp. 3773-3782
[12] Decay characterization of solutions to dissipative equations, J. London Math. Soc., Volume 91 (2015) no. 2, pp. 573-595
[13] Decay characterization of solutions to Navier–Stokes–Voigt equations in terms of the initial datum, J. Differential Equations, Volume 260 (2016), pp. 4440-4453
[14] decay for weak solutions of the Navier–Stokes equations, Arch. Ration. Mech. Anal., Volume 88 (1985) no. 2, pp. 209-222
[15] Large time behaviour of solutions to the Navier–Stokes equations, Comm. Partial Differential Equations, Volume 11 (1986) no. 7, pp. 733-763
[16] Navier–Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam–New York–Oxford, 1977
[17] On global existence, energy decay and blow-up criteria for the Hall–MHD system, J. Differential Equations, Volume 259 (2015), pp. 5982-6008
[18] On analyticity and temporal decay rates of solutions to the viscous resistive Hall–MHD system, J. Differential Equations, Volume 260 (2016), pp. 6504-6524
[19] Space-time decay estimates for the incompressible viscous resistive MHD and Hall–MHD equations, J. Funct. Anal., Volume 270 (2016), pp. 2168-2187
[20] A remark on the decay of solutions to the 3-D Navier–Stokes equations, Math. Methods Appl. Sci., Volume 30 (2007) no. 10, pp. 1223-1229
[21] Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows, Nonlinearity, Volume 21 (2008) no. 9, pp. 2061-2071
Cited by Sources:
Comments - Policy