[Décroissance des solutions d'un nouveau système d'équations magnétohydrodynamiques de Hall dans
This paper discusses the large-time behavior of solutions for a new Hall–MHD system in
Cette Note traite du comportement à long terme des solutions d'un nouveau système d'équations magnétohydrodynamiques de Hall dans
Accepté le :
Publié le :
Xiaopeng Zhao 1, 2
@article{CRMATH_2017__355_3_310_0, author = {Xiaopeng Zhao}, title = {Decay of solutions to a new {Hall{\textendash}MHD} system in $ {\mathbb{R}}^{3}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {310--317}, publisher = {Elsevier}, volume = {355}, number = {3}, year = {2017}, doi = {10.1016/j.crma.2017.01.019}, language = {en}, }
Xiaopeng Zhao. Decay of solutions to a new Hall–MHD system in $ {\mathbb{R}}^{3}$. Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 310-317. doi : 10.1016/j.crma.2017.01.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.019/
[1] Poincaré's inequality and diffusive evolution equations, Adv. Difference Equ., Volume 14 (2009), pp. 241-260
[2] Characterization of solutions to dissipative systems with sharp algebraic decay, SIAM J. Math. Anal., Volume 48 (2016), pp. 1616-1633
[3] Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 31 (2014), pp. 555-565
[4] On the temporal decay for the Hall–magnetohydrodynamic equations, J. Differential Equations, Volume 255 (2013), pp. 3971-3982
[5] Stable numerical scheme for the magnetic induction equation with Hall effect (T. Li; S. Jiang, eds.), Hyperbolic Problems: Theory, Numerics and Applications, vol. 2, Higher Education Press, 2012, pp. 374-381
[6] Rapid magnetic reconnection in the Earth's magnetosphere mediated by whistler waves, Nature, Volume 410 (2001), pp. 557-560
[7] On blow-up criteria for a new Hall–MHD system, Appl. Math. Comput., Volume 274 (2016), pp. 20-24
[8] Regularity criteria for the incompressible Hall–MHD system, ZAMM Z. Angew. Math. Mech., Volume 95 (2015), pp. 1156-1160
[9] Asymptotic behavior of strong solutions to the 3D Navier–Stokes equations with a nonlinear damping term, Nonlinear Anal., Volume 75 (2012) no. 13, pp. 5002-5009
[10] Time decay rate for two 3D magnetohydrodynamics-α models, Math. Methods Appl. Sci., Volume 37 (2014) no. 6, pp. 838-845
[11] Hall magnetohydrodynamic reconnection: the geospace environment modeling challenge, J. Geophys. Res., Volume 106 (2001) no. A3, pp. 3773-3782
[12] Decay characterization of solutions to dissipative equations, J. London Math. Soc., Volume 91 (2015) no. 2, pp. 573-595
[13] Decay characterization of solutions to Navier–Stokes–Voigt equations in terms of the initial datum, J. Differential Equations, Volume 260 (2016), pp. 4440-4453
[14]
[15] Large time behaviour of solutions to the Navier–Stokes equations, Comm. Partial Differential Equations, Volume 11 (1986) no. 7, pp. 733-763
[16] Navier–Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam–New York–Oxford, 1977
[17] On global existence, energy decay and blow-up criteria for the Hall–MHD system, J. Differential Equations, Volume 259 (2015), pp. 5982-6008
[18] On analyticity and temporal decay rates of solutions to the viscous resistive Hall–MHD system, J. Differential Equations, Volume 260 (2016), pp. 6504-6524
[19] Space-time decay estimates for the incompressible viscous resistive MHD and Hall–MHD equations, J. Funct. Anal., Volume 270 (2016), pp. 2168-2187
[20] A remark on the decay of solutions to the 3-D Navier–Stokes equations, Math. Methods Appl. Sci., Volume 30 (2007) no. 10, pp. 1223-1229
[21] Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows, Nonlinearity, Volume 21 (2008) no. 9, pp. 2061-2071
- Existence, uniqueness and decay rates of a certain type of 3D Hall-MHD equations with power-law type, Analysis and Mathematical Physics, Volume 14 (2024) no. 2 | DOI:10.1007/s13324-024-00882-6
- On the global well-posedness for the compressible Hall-MHD system, Journal of Mathematical Physics, Volume 65 (2024) no. 1 | DOI:10.1063/5.0175649
- THE GLOBAL STRONG SOLUTIONS OF THE 3D INCOMPRESSIBLE HALL-MHD SYSTEM WITH VARIABLE DENSITY, Mathematical Modelling and Analysis, Volume 29 (2024) no. 2, p. 288 | DOI:10.3846/mma.2024.17776
- Decay estimates for a class of non‐Newtonian 3D magneto‐micropolar fluids, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 102 (2022) no. 10 | DOI:10.1002/zamm.202000218
- Global existence and large time behavior of solutions for full compressible Hall-MHD equations, Applicable Analysis, Volume 99 (2020) no. 11, p. 1865 | DOI:10.1080/00036811.2018.1549320
- On Global Well-Posedness and Temporal Decay for 3D Magnetic Induction Equations with Hall Effect, Mathematics, Volume 8 (2020) no. 10, p. 1847 | DOI:10.3390/math8101847
- Global well-posedness and decay characterization of solutions to 3D MHD equations with Hall and ion-slip effects, Zeitschrift für angewandte Mathematik und Physik, Volume 71 (2020) no. 3 | DOI:10.1007/s00033-020-01313-9
- Asymptotic Behavior of Solutions to a New Hall-MHD System, Acta Applicandae Mathematicae, Volume 157 (2018) no. 1, p. 205 | DOI:10.1007/s10440-018-0170-5
- Global well-posedness and analyticity of solutions to three-dimensional Hall-MHD equations, Journal of Mathematical Analysis and Applications, Volume 463 (2018) no. 2, p. 506 | DOI:10.1016/j.jmaa.2018.03.020
- Decay characterization of solutions to generalized Hall-MHD system in R3, Journal of Mathematical Physics, Volume 59 (2018) no. 7 | DOI:10.1063/1.5040409
- Global well-posedness and asymptotic behavior of solutions for the three-dimensional MHD equations with Hall and ion-slip effects, Zeitschrift für angewandte Mathematik und Physik, Volume 69 (2018) no. 2 | DOI:10.1007/s00033-018-0907-z
Cité par 11 documents. Sources : Crossref
Commentaires - Politique