Comptes Rendus
Partial differential equations
Instability of an integrable nonlocal NLS
[De l'instabilité d'une équation NLS non locale intégrable]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 299-303.

Nous discutons dans cette note la dynamique globale d'une équation NLS intégrable non locale sur R, qui a été étudiée récemment par des méthodes de systèmes intégrables. Nous démontrons deux résultats qui contrastent fortement avec le cas de l'équation NLS focalisante cubique locale. Premièrement, il existe des solutions qui explosent en temps fini, avec condition initiale arbitrairement petite dans Hs(R), pour tout s0. Par ailleurs, les solitons de l'équation NLS locale, qui sont aussi solutions de l'équation non locale, sont instables par explosion pour cette dernière.

In this note, we discuss the global dynamics of an integrable nonlocal NLS on R, which has been the object of a recent investigation by integrable systems methods. We prove two results that are in striking contrast with the case of the local cubic focusing NLS. First, finite-time blow-up solutions exist with arbitrarily small initial data in Hs(R), for any s0. On the other hand, the solitons of the local NLS, which are also solutions to the nonlocal equation, are unstable by blow-up for the latter.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.01.018

François Genoud 1

1 Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
@article{CRMATH_2017__355_3_299_0,
     author = {Fran\c{c}ois Genoud},
     title = {Instability of an integrable nonlocal {NLS}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {299--303},
     publisher = {Elsevier},
     volume = {355},
     number = {3},
     year = {2017},
     doi = {10.1016/j.crma.2017.01.018},
     language = {en},
}
TY  - JOUR
AU  - François Genoud
TI  - Instability of an integrable nonlocal NLS
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 299
EP  - 303
VL  - 355
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2017.01.018
LA  - en
ID  - CRMATH_2017__355_3_299_0
ER  - 
%0 Journal Article
%A François Genoud
%T Instability of an integrable nonlocal NLS
%J Comptes Rendus. Mathématique
%D 2017
%P 299-303
%V 355
%N 3
%I Elsevier
%R 10.1016/j.crma.2017.01.018
%G en
%F CRMATH_2017__355_3_299_0
François Genoud. Instability of an integrable nonlocal NLS. Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 299-303. doi : 10.1016/j.crma.2017.01.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.018/

[1] M.J. Ablowitz; Z.H. Musslimani Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett., Volume 110 (2013)

[2] M.J. Ablowitz; Z.H. Musslimani Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity, Volume 29 (2016), p. 915

[3] C.M. Bender; D.C. Brody; H.F. Jones Complex extension of quantum mechanics, Phys. Rev. Lett., Volume 89 (2002)

[4] A. Mostafazadeh Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys., Volume 07 (2010), p. 1191

[5] Z.H. Musslimani; K.G. Makris; R. El-Ganainy; D.N. Christodoulides Optical solitons in PT periodic potentials, Phys. Rev. Lett., Volume 100 (2008)

[6] S. Nixon; L. Ge; J. Yang Stability analysis for solitons in PT-symmetric optical lattices, Phys. Rev. A, Volume 85 (2012)

  • Chuanxin Xu; Tao Xu; Min Li; Yehui Huang Inverse scattering transform for the focusing PT-symmetric nonlinear Schrödinger equation with nonzero boundary conditions: Higher-order poles and multi-soliton solutions, Physica D: Nonlinear Phenomena, Volume 472 (2025), p. 134466 | DOI:10.1016/j.physd.2024.134466
  • Yi Zhao; Engui Fan Existence of global solutions to the nonlocal Schrödinger equation on the line, Studies in Applied Mathematics, Volume 152 (2024) no. 1, p. 111 | DOI:10.1111/sapm.12636
  • Yan Rybalko; Dmitry Shepelsky Global conservative solutions of the nonlocal NLS equation beyond blow-up, Discrete and Continuous Dynamical Systems, Volume 43 (2023) no. 2, p. 860 | DOI:10.3934/dcds.2022173
  • Jie Chen; Yufeng Lu; Baoxiang Wang Global Cauchy problems for the nonlocal (derivative) NLS in Eσs, Journal of Differential Equations, Volume 344 (2023), p. 767 | DOI:10.1016/j.jde.2022.11.002
  • Bo‐Wen Li; Tao Xu; Tian‐Li Zhang; Li‐Cong An; Yang Chen Elliptic‐ and hyperbolic‐function solutions of the nonlocal reverse‐time and reverse‐space‐time nonlinear Schrödinger equations, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 17, p. 10877 | DOI:10.1002/mma.8422
  • Julia Cen; Francisco Correa; Andreas Fring; Takano Taira Stability in integrable nonlocal nonlinear equations, Physics Letters A, Volume 435 (2022), p. 128060 | DOI:10.1016/j.physleta.2022.128060
  • Tao Xu; Lingling Li; Min Li; Chunxia Li; Xuefeng Zhang Rational solutions of the defocusing non-local nonlinear Schrödinger equation: asymptotic analysis and soliton interactions, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 477 (2021) no. 2254 | DOI:10.1098/rspa.2021.0512
  • Tao Xu; Yang Chen; Min Li; De-Xin Meng General stationary solutions of the nonlocal nonlinear Schrödinger equation and their relevance to the PT-symmetric system, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 29 (2019) no. 12 | DOI:10.1063/1.5121776
  • Yan Rybalko; Dmitry Shepelsky Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation, Journal of Mathematical Physics, Volume 60 (2019) no. 3 | DOI:10.1063/1.5036705

Cité par 9 documents. Sources : Crossref

Commentaires - Politique