[Modèles combinatoires pour les espaces de polynômes cubiques]
W. Thurston a construit un modèle combinatoire de l'ensemble de Mandelbrot
W. Thurston constructed a combinatorial model of the Mandelbrot set
Accepté le :
Publié le :
Alexander Blokh 1 ; Lex Oversteegen 1 ; Ross Ptacek 2 ; Vladlen Timorin 2
@article{CRMATH_2017__355_5_590_0, author = {Alexander Blokh and Lex Oversteegen and Ross Ptacek and Vladlen Timorin}, title = {Combinatorial models for spaces of cubic polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {590--595}, publisher = {Elsevier}, volume = {355}, number = {5}, year = {2017}, doi = {10.1016/j.crma.2017.04.005}, language = {en}, }
TY - JOUR AU - Alexander Blokh AU - Lex Oversteegen AU - Ross Ptacek AU - Vladlen Timorin TI - Combinatorial models for spaces of cubic polynomials JO - Comptes Rendus. Mathématique PY - 2017 SP - 590 EP - 595 VL - 355 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2017.04.005 LA - en ID - CRMATH_2017__355_5_590_0 ER -
Alexander Blokh; Lex Oversteegen; Ross Ptacek; Vladlen Timorin. Combinatorial models for spaces of cubic polynomials. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 590-595. doi : 10.1016/j.crma.2017.04.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.005/
[1] Laminations in the language of leaves, Trans. Amer. Math. Soc., Volume 365 (2013), pp. 5367-5391
[2] Laminational models for spaces of polynomials of any degree, 2014 (preprint second version 2016) | arXiv
[3] Models for spaces of dendritic polynomials, 2017 (preprint) | arXiv
[4] Fixed points of polynomial maps. Part II. Fixed point portraits, Ann. Sci. Éc. Norm. Supér. (4), Volume 26 (1993), pp. 51-98
[5]
[6] On fibers and local connectivity of Mandelbrot and multibrot sets (M. Lapidus; M. van Frankenhuysen, eds.), Fractal Geometry and Applications: a Jubilee of Benoit Mandelbrot, Proc. Symp. Pure Math., vol. 72, American Mathematical Society, Providence, RI, USA, 2004, pp. 477-517 (Part 1)
[7] The combinatorics of iterated rational maps (1985) (D. Schleicher; A.K. Peters, eds.), Complex Dynamics: Families and Friends, 2009, pp. 1-108
- Lavaurs algorithm for cubic symmetric polynomials, Ergodic Theory and Dynamical Systems (2025), p. 1 | DOI:10.1017/etds.2024.126
- Symmetric cubic laminations, Conformal Geometry and Dynamics, Volume 27 (2023), pp. 264-293 | DOI:10.1090/ecgd/385 | Zbl:1530.37069
- Unicritical laminations, Fundamenta Mathematicae, Volume 258 (2022) no. 1, pp. 25-63 | DOI:10.4064/fm18-2-2022 | Zbl:1507.37066
- Dynamical generation of parameter laminations, Dynamics: topology and numbers. Conference, Max Planck Institute for Mathematics, Bonn, Germany, July 2–6, 2018, Providence, RI: American Mathematical Society (AMS), 2020, pp. 205-229 | DOI:10.1090/conm/744/14986 | Zbl:1447.37053
- Laminational models for some spaces of polynomials of any degree, Memoirs of the American Mathematical Society, 1288, Providence, RI: American Mathematical Society (AMS), 2020 | DOI:10.1090/memo/1288 | Zbl:1508.37008
- Models for spaces of dendritic polynomials, Transactions of the American Mathematical Society, Volume 372 (2019) no. 7, pp. 4829-4849 | DOI:10.1090/tran/7482 | Zbl:1427.37037
- The parameter space of cubic laminations with a fixed critical leaf, Ergodic Theory and Dynamical Systems, Volume 37 (2017) no. 8, pp. 2453-2486 | DOI:10.1017/etds.2016.22 | Zbl:1403.37053
- The combinatorial Mandelbrot set as the quotient of the space of geolaminations, arXiv (2015) | DOI:10.48550/arxiv.1503.00351 | arXiv:1503.00351
- The parameter space of cubic laminations with a fixed critical leaf, arXiv (2015) | DOI:10.48550/arxiv.1501.05568 | arXiv:1501.05568
Cité par 9 documents. Sources : Crossref, NASA ADS, zbMATH
Commentaires - Politique