[Estimées d'observabilité pour l'équation des ondes avec des coefficients continus]
Le but de cette note est de démontrer des estimées d'observabilité pour l'équation des ondes avec une densité continue dans le domaine, et qui satisfait une condition de type multiplicateur seulement au sens des distributions. Notre argument est essentiellement basé sur le fait que l'on peut alors construire des approximations convenables d'une telle fonction de densité par des fonctions régulières pour lesquelles les équations des ondes correspondantes sont uniformément observables. La preuve se termine alors par un passage à la limite relativement standard.
The goal of this note is to prove observability estimates for the wave equation with a density which is only continuous in the domain, and satisfies some multiplier-type condition only in the sense of distributions. Our main argument is that one can construct suitable approximations of such density by a sequence of smooth densities whose corresponding wave equations are uniformly observable. The end of the argument then consists in a rather standard passage to the limit.
Accepté le :
Publié le :
Belhassen Dehman 1 ; Sylvain Ervedoza 2
@article{CRMATH_2017__355_5_499_0, author = {Belhassen Dehman and Sylvain Ervedoza}, title = {Observability estimates for the wave equation with rough coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {499--514}, publisher = {Elsevier}, volume = {355}, number = {5}, year = {2017}, doi = {10.1016/j.crma.2017.03.011}, language = {en}, }
Belhassen Dehman; Sylvain Ervedoza. Observability estimates for the wave equation with rough coefficients. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 499-514. doi : 10.1016/j.crma.2017.03.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.03.011/
[1] Un exemple d'utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques, Rend. Semin. Mat. (Torino) (1989) no. special issue, pp. 11-31 (1988. Nonlinear hyperbolic equations in applied sciences)
[2] Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992) no. 5, pp. 1024-1065
[3] Contrôle de l'équation des ondes dans des ouverts peu réguliers, Asymptot. Anal., Volume 14 (1997), pp. 157-191
[4] Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris, Ser. I, Volume 325 (1997) no. 7, pp. 749-752
[5] Concentration and lack of observability of waves in highly heterogeneous media, Arch. Ration. Mech. Anal., Volume 164 (2002) no. 1, pp. 39-72
[6] Addendum to: “Concentration and lack of observability of waves in highly heterogeneous media”, Arch. Ration. Mech. Anal., Volume 164 (2002) no. 1, pp. 39-72 (mr1921162 Arch. Ration. Mech. Anal., 185, 3, 2007, pp. 365-377)
[7] Time-dependent loss of derivatives for hyperbolic operators with non regular coefficients, Commun. Partial Differ. Equ., Volume 38 (2013) no. 10, pp. 1791-1817
[8] Dependence of high-frequency waves with respect to potentials, SIAM J. Control Optim., Volume 52 (2014) no. 6, pp. 3722-3750
[9] Weak observability estimates for 1-D wave equations with rough coefficients, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 2, pp. 245-277
[10] Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996
[11] Observabilité frontière de l'équation des ondes, C. R. Acad. Sci. Paris, Ser. I, Volume 302 (1986) no. 12, pp. 443-446
[12] The Analysis of Linear Partial Differential Operators III. Pseudodifferential operators, Grundlehren der Mathematischen Wissenschaften, vol. 274, Springer-Verlag, Berlin, 1985
[13] Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients, Trans. Amer. Math. Soc., Volume 132 (1968), pp. 159-174
[14] Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris, 1994
[15] C. Laurent, M. Léautaud, Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves, 2015, to appear in J. Eur. Math. Soc.
[16] Uniform observability estimates for linear waves, ESAIM Control Optim. Calc. Var., Volume 22 (2016) no. 4, pp. 1097-1136
[17] Contrôlabilité exacte, Stabilisation et perturbations de systèmes distribués. Tome 1. Contrôlabilité exacte, RMA, vol. 8, Masson, Paris, 1988
[18] Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., Volume 30 (1988) no. 1, pp. 1-68
[19] Problèmes aux limites non homogènes et applications, vol. 1, Travaux et Recherches mathématiques, vol. 17, Dunod, Paris, 1968
Cité par Sources :
☆ The research of the first author was supported by the Tunisian Ministry for Higher Education and Scientific Research within the LAB-STI 02 program. This work was elaborated while the first author was visiting the Institut Camille-Jordan of ‘Université Claude-Bernard – Lyon-1’. He wishes to thank all the colleagues for their warm hospitality.
Commentaires - Politique