Comptes Rendus
Partial differential equations/Calculus of variations
Interaction energy between vortices of vector fields on Riemannian surfaces
[Énergie d'interaction entre les tourbillons des champs de vecteurs sur une surface riemannienne]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 515-521.

Nous étudions un modèle variationnel de type Ginzburg–Landau (dépendant d'un petit paramètre ε>0) pour des champs de vecteurs (tangents) sur une surface riemannienne. Lorsque ε0, ces champs de vecteurs auront des points singuliers d'indice non nul, appelés tourbillons. Notre résultat détermine l'énergie d'interaction entre les tourbillons en tant que Γ-limite (au second ordre) pour ε0.

We study a variational Ginzburg–Landau-type model depending on a small parameter ε>0 for (tangent) vector fields on a 2-dimensional Riemannian surface. As ε0, the vector fields tend to be of unit length and will have singular points of a (non-zero) index, called vortices. Our main result determines the interaction energy between these vortices as a Γ-limit (at the second order) as ε0.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.04.004
Radu Ignat 1 ; Robert L. Jerrard 2

1 Institut de Mathématiques de Toulouse, Université Paul-Sabatier, 31062 Toulouse, France
2 Department of Mathematics, University of Toronto, Toronto, Ontario, Canada
@article{CRMATH_2017__355_5_515_0,
     author = {Radu Ignat and Robert L. Jerrard},
     title = {Interaction energy between vortices of vector fields on {Riemannian} surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {515--521},
     publisher = {Elsevier},
     volume = {355},
     number = {5},
     year = {2017},
     doi = {10.1016/j.crma.2017.04.004},
     language = {en},
}
TY  - JOUR
AU  - Radu Ignat
AU  - Robert L. Jerrard
TI  - Interaction energy between vortices of vector fields on Riemannian surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 515
EP  - 521
VL  - 355
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2017.04.004
LA  - en
ID  - CRMATH_2017__355_5_515_0
ER  - 
%0 Journal Article
%A Radu Ignat
%A Robert L. Jerrard
%T Interaction energy between vortices of vector fields on Riemannian surfaces
%J Comptes Rendus. Mathématique
%D 2017
%P 515-521
%V 355
%N 5
%I Elsevier
%R 10.1016/j.crma.2017.04.004
%G en
%F CRMATH_2017__355_5_515_0
Radu Ignat; Robert L. Jerrard. Interaction energy between vortices of vector fields on Riemannian surfaces. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 515-521. doi : 10.1016/j.crma.2017.04.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.004/

[1] R. Alicandro; M. Ponsiglione Ginzburg–Landau functionals and renormalized energy: a revised Γ-convergence approach, J. Funct. Anal., Volume 266 (2014), pp. 4890-4907

[2] T. Aubin Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, Berlin, 1998

[3] F. Bethuel; H. Brezis; F. Hélein Ginzburg–Landau Vortices, Birkhäuser, Boston, MA, USA, 1994

[4] G. Canevari; A. Segatti Defects in Nematic Shells: a Γ-convergence discrete-to-continuum approach | arXiv

[5] G. Carbou Thin layers in micromagnetism, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 1529-1546

[6] J.E. Colliander; R.L. Jerrard Ginzburg–Landau vortices: weak stability and Schrödinger equation dynamics, J. Anal. Math., Volume 77 (1999), pp. 129-205

[7] M.P. do Carmo Differential Forms and Applications, Springer-Verlag, Berlin, 1994

[8] H. Federer; W.H. Fleming Normal and integral currents, Ann. of Math. (2), Volume 72 (1960), pp. 458-520

[9] R. Ignat, R.L. Jerrard, Renormalized energy between vortices in some Ginzburg–Landau models on Riemannian surfaces, in preparation.

[10] R.L. Jerrard Lower bounds for generalized Ginzburg–Landau functionals, SIAM J. Math. Anal., Volume 30 (1999), pp. 721-746

[11] R.L. Jerrard; H.M. Soner The Jacobian and the Ginzburg–Landau energy, Calc. Var. Partial Differ. Equ., Volume 14 (2002), pp. 151-191

[12] E. Sandier Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal., Volume 152 (1998), pp. 379-403

[13] E. Sandier; S. Serfaty Vortices in the Magnetic Ginzburg–Landau Model, Birkhäuser, 2007

[14] J. Steiner A geometrical mass and its extremal properties for metrics on S2, Duke Math. J., Volume 129 (2005), pp. 63-86

Cité par Sources :

Commentaires - Politique