In this paper, we prove that if Ω is a bounded convex domain in , , and S is an affine complex hyperplane such that is not empty, then is not Gromov hyperbolic with respect to the Kobayashi distance. Next, we show that if X is a bounded convex domain in , then is not Gromov hyperbolic, where φ is a strictly plurisubaharmonic function on X continuous up to .
Nous étudions dans cette Note l'hyperbolicité au sens de Gromov de certains domaines de . On démontre que, si Ω est un domaine convexe borné de , , et si S est un hyperplan affine complexe tel que , alors n'est pas hyperbolique au sens de Gromov. Si X est un domaine convexe de , alors n'est pas Gromov hyperbolique, où φ est une fonction strictement plurisousharmonique sur X et continue sur .
Accepted:
Published online:
Fathi Haggui 1; Abdelwahed Chrih 1
@article{CRMATH_2017__355_5_493_0,
author = {Fathi Haggui and Abdelwahed Chrih},
title = {On the {Gromov} non-hyperbolicity of certain domains in $ {\mathbb{C}}^{n}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {493--498},
year = {2017},
publisher = {Elsevier},
volume = {355},
number = {5},
doi = {10.1016/j.crma.2017.03.013},
language = {en},
}
Fathi Haggui; Abdelwahed Chrih. On the Gromov non-hyperbolicity of certain domains in $ {\mathbb{C}}^{n}$. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 493-498. doi: 10.1016/j.crma.2017.03.013
[1] Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Comment. Math. Helv., Volume 75 (2000), pp. 504-533
[2] Elements of Asymptotic Geometry, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zurich, Switzerland, 2007
[3] Notes sur les groupes hyperboliques de Gromov, I.R.M.A., Strasbourg, France, 1989
[4] Complete hyperbolicity of Hartogs domain, Manuscr. Math., Volume 112 (2003), pp. 171-181
[5] H. Gaussier, H. Seshadri, On the Gromov hyperbolicity of convex domains in . ArXiv e-prints, December 2013.
[6] Hyperbolic groups, Essays in Group Theory, Mathematical Sciences Research Institute Publications, vol. 8, Springer, New York, 1987, pp. 75-263
[7] Schwartz-type lemmas for solutions of -inequalities and complete hyperbolicity of almost complex manifolds, Ann. Inst. Fourier Grenoble, Volume 54 (2004) no. 7, pp. 2387-2435
[8] Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 318, Springer-Verlag, Berlin, 1998
[9] N. Nikolov, P.J. Thomas, M. Trybula, Gromov (non)hyperbolicity of certain domains in . ArXiv e-prints, March 2014.
[10] A.M. Zimmer, Gromov hyperbolicity and the Kobayashi metric on convex domain of finite type, Math. Ann., . | DOI
Cited by Sources:
Comments - Policy
