In this note, we construct integrable deformations of the three-dimensional real valued Maxwell–Bloch equations by modifying their constants of motions. We obtain two Hamilton–Poisson realizations of the new system. Moreover, we prove that the obtained system has infinitely many Hamilton–Poisson realizations. Particularly, we present a Hamilton–Poisson approach of the system obtained considering two concrete deformation functions.
Dans cette Note, nous construisons des déformations intégrables des équations de Maxwell–Bloch en modifiant leurs constantes de mouvement. Nous obtenons deux réalisations Hamilton–Poisson du nouveau système. De plus, nous prouvons que le système obtenu admet des réalisations Hamilton–Poisson infiniment nombreuses. Nous présentons une approche Hamilton–Poisson du système obtenu en considérant deux fonctions particulières de déformation.
Accepted:
Published online:
Cristian Lăzureanu 1
@article{CRMATH_2017__355_5_596_0, author = {Cristian L\u{a}zureanu}, title = {On the {Hamilton{\textendash}Poisson} realizations of the integrable deformations of the {Maxwell{\textendash}Bloch} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {596--600}, publisher = {Elsevier}, volume = {355}, number = {5}, year = {2017}, doi = {10.1016/j.crma.2017.04.002}, language = {en}, }
TY - JOUR AU - Cristian Lăzureanu TI - On the Hamilton–Poisson realizations of the integrable deformations of the Maxwell–Bloch equations JO - Comptes Rendus. Mathématique PY - 2017 SP - 596 EP - 600 VL - 355 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2017.04.002 LA - en ID - CRMATH_2017__355_5_596_0 ER -
Cristian Lăzureanu. On the Hamilton–Poisson realizations of the integrable deformations of the Maxwell–Bloch equations. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 596-600. doi : 10.1016/j.crma.2017.04.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.002/
[1] Integrable deformations of Röossler and Lorenz systems from Poisson–Lie groups, J. Differ. Equ., Volume 260 (2016) no. 11, pp. 8207-8228
[2] Periodic orbits in the case of zero eigenvalue, C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007), pp. 779-784
[3] A Rikitake type system with one control, Discrete Contin. Dyn. Syst., Ser. B, Volume 18 (2013) no. 7, pp. 1755-1776
[4] Multiple Lie–Poisson structures, reductions, and geometric phases for the Maxwell–Bloch travelling wave equations, J. Nonlinear Sci., Volume 2 (1992), pp. 241-262
[5] Remark on integrable deformations of the Euler top, J. Math. Anal. Appl., Volume 416 (2014), pp. 995-997
[6] On the symmetries of a Rikitake type system, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012) no. 9–10, pp. 529-533
[7] A Rikitake type system with quadratic control, Int. J. Bifurc. Chaos Appl. Sci. Eng., Volume 22 (2012) no. 11
[8] Some geometrical properties of the Maxwell–Bloch equations with a linear control, Timişoara, Romania (2012), pp. 151-158
[9] Symmetries and properties of the energy-Casimir mapping in the ball-plate problem, Adv. Math. Phys., Volume 2017 (2017)
[10] Symplectic Geometry and Analytical Mechanics, D. Reidel, Dordrecht, The Netherlands, 1987
[11] Problème général de la stabilité du mouvement, vol. 17, Princeton University Press, Princeton, NJ, USA, 1949
[12] On a Hamiltonian version of the Rikitake system, SIAM J. Appl. Dyn. Syst., Volume 8 (2009) no. 1, pp. 454-479
Cited by Sources:
Comments - Policy