[De la sous-poly-harmonicité des solutions de (−Δ)pu < 0 dans
In this note, we mainly study the relation between the sign of
Dans cette Note, nous étudions principalement la relation entre le signe de
Accepté le :
Publié le :
Quốc Anh Ngô 1
@article{CRMATH_2017__355_5_526_0, author = {Quốc Anh Ng\^o}, title = {On the sub poly-harmonic property for solutions to {(\ensuremath{-}\ensuremath{\Delta})\protect\textsuperscript{\protect\emph{p}}\protect\emph{u}\,<\,0} in $ {\mathbb{R}}^{n}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {526--532}, publisher = {Elsevier}, volume = {355}, number = {5}, year = {2017}, doi = {10.1016/j.crma.2017.04.003}, language = {en}, }
Quốc Anh Ngô. On the sub poly-harmonic property for solutions to (−Δ)pu < 0 in $ {\mathbb{R}}^{n}$. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 526-532. doi : 10.1016/j.crma.2017.04.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.003/
[1] Classification of solutions of some nonlinear elliptic equations, Duke Math. J., Volume 63 (1991), pp. 615-622
[2] Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure Appl. Anal., Volume 12 (2013), pp. 2497-2514
[3] Classification of solutions for an integral equation, Commun. Pure Appl. Math., Volume 59 (2006), pp. 330-343
[4] Super poly-harmonic property of solutions for Navier boundary problems on a half space, J. Funct. Anal., Volume 265 (2013), pp. 1522-1555
[5] Nonlinear biharmonic equations with negative exponents, J. Differ. Equ., Volume 246 (2009), pp. 216-234
[6] On radial solutions of
[7] A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., Volume 229 (2012), pp. 2835-2867
[8] Existence and stability properties of entire solutions to the polyharmonic equation
[9] A note on nonlinear biharmonic equations with negative exponents, J. Differ. Equ., Volume 253 (2012), pp. 3147-3157
[10] Entire solutions and global bifurcations for a biharmonic equation with singular non-linearity in
[11] Remarks on entire solutions for two fourth-order elliptic problems, Proc. Edinb. Math. Soc., Volume 59 (2016), pp. 777-786
[12] Liouville-type theorems for polyharmonic systems in
[13] Properties of positive solutions to an elliptic equation with negative exponent, J. Funct. Anal., Volume 254 (2008), pp. 1058-1087
[14] Classification of solutions to the higher order Liouville's equation on
[15] Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electron. J. Differ. Equ., Volume 37 (2003), pp. 1-13
[16] Classification of solutions of higher order conformally invariant equations, Math. Ann., Volume 313 (1999), pp. 207-228
[17] Uniqueness theorem for the entire positive solutions of biharmonic equations in
[18] Exact solutions of nonlinear conformally invariant integral equations in
- Liouville type theorems, a priori estimates and existence of solutions for critical and super-critical order Hardy-Hénon type equations in
, Mathematische Zeitschrift, Volume 303 (2023) no. 4, p. 36 (Id/No 104) | DOI:10.1007/s00209-023-03265-y | Zbl:1519.35043 - On properties of positive solutions to nonlinear tri-harmonic and bi-harmonic equations with negative exponents, Bulletin of Mathematical Sciences, Volume 12 (2022) no. 3, p. 48 (Id/No 2250007) | DOI:10.1142/s1664360722500072 | Zbl:1505.35128
- Polyharmonic inequalities with nonlocal terms, Journal of Differential Equations, Volume 296 (2021), pp. 799-821 | DOI:10.1016/j.jde.2021.06.019 | Zbl:1468.35054
- Exhaustive existence and non-existence results for some prototype polyharmonic equations in the whole space, Journal of Differential Equations, Volume 269 (2020) no. 12, pp. 11621-11645 | DOI:10.1016/j.jde.2020.07.041 | Zbl:1454.35104
- Classification of entire solutions of
with exact linear growth at infinity in , Proceedings of the American Mathematical Society, Volume 146 (2018) no. 6, pp. 2585-2600 | DOI:10.1090/proc/13960 | Zbl:1391.35025
Cité par 5 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier