The aim of this note is to present the almost global well-posedness result for the Cauchy problem for the Kirchhoff equation with large data in Gevrey spaces. We also briefly discuss the corresponding results in bounded and in exterior domains.
Le propos de cette Note est d'énoncer que l'équation de Kirchhoff avec des données grandes dans les espaces de Gevrey est presque globalement bien posée. Nous discutons aussi brièvement les résultats correspondants dans les domaines bornés et les domaines extérieurs.
Accepted:
Published online:
Tokio Matsuyama 1; Michael Ruzhansky 2
@article{CRMATH_2017__355_5_522_0, author = {Tokio Matsuyama and Michael Ruzhansky}, title = {Almost global well-posedness of {Kirchhoff} equation with {Gevrey} data}, journal = {Comptes Rendus. Math\'ematique}, pages = {522--525}, publisher = {Elsevier}, volume = {355}, number = {5}, year = {2017}, doi = {10.1016/j.crma.2017.04.001}, language = {en}, }
Tokio Matsuyama; Michael Ruzhansky. Almost global well-posedness of Kirchhoff equation with Gevrey data. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 522-525. doi : 10.1016/j.crma.2017.04.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.001/
[1] Global solutions to the Cauchy problem for a nonlinear hyperbolic equation, Collège de France Seminar, vol. VI, Paris, 1982/1983 (H. Brézis; J.-L. Lions, eds.) (Research Notes in Mathematics), Volume vol. 109, Pitman, Boston, MA, USA (1984), pp. 1-26
[2] Sur une classe d'équations fonctionnelles aux dérivées partielles, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 4 (1940), pp. 17-27
[3] Well-posedness of a hyperbolic equation with non-Lipschitz coefficients, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 1 (2002), pp. 327-358
[4] Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., Volume 108 (1992), pp. 247-262
[5] Derivative loss for Kirchhoff equations with non-Lipschitz nonlinear term, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 8 (2009) no. 4, pp. 613-646
[6] Kirchhoff equations in generalized Gevrey spaces: local existence, global existence, uniqueness, Rend. Ist. Mat. Univ. Trieste, Volume 42 (2010) no. supp., pp. 89-110
[7] Kirchhoff equation from quasi-analytic to spectral-gap data, Bull. Lond. Math. Soc., Volume 43 (2011), pp. 374-385
[8] Global solvability for Kirchhoff equation in special classes of non-analytic functions, J. Differ. Equ., Volume 230 (2006), pp. 49-70
[9] On global analytic solutions of the degenerate Kirchhoff equation, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 21 (1994), pp. 279-297
[10] Vorlesungen über Mechanik, Teubner, Leipzig, 1876
[11] On the global solvability of Kirchhoff equation for non-analytic initial data, J. Differ. Equ., Volume 211 (2005), pp. 38-60
[12] Global well-posedness of Kirchhoff systems, J. Math. Pures Appl., Volume 100 (2013), pp. 220-240
[13] Global well-posedness of the Kirchhoff equation and Kirchhoff systems, Analytic Methods in Interdisciplinary Applications, Springer Proc. Math. Stat., vol. 116, Springer, 2015
[14] On the Gevrey well-posedness of the Kirchhoff equation, J. Anal. Math. (2017) (in press in 2020) | arXiv
[15] On a global solution of some quasilinear hyperbolic equation, Tokyo J. Math., Volume 7 (1984), pp. 437-459
[16] On a class of quasilinear hyperbolic equations, Math. USSR Sb., Volume 25 (1975), pp. 145-158
Cited by Sources:
Comments - Policy