[Opérateurs hamiltoniens compatibles pour l'équation de Krichever–Novikov]
Il a été démontré par Sokolov que la hiérarchie de l'équation de Krichever–Novikov est hamiltonienne pour l'opérateur hamiltonien
It has been proved by Sokolov that Krichever–Novikov equation's hierarchy is hamiltonian for the Hamiltonian operator
Accepté le :
Publié le :
Sylvain Carpentier 1
@article{CRMATH_2017__355_7_744_0, author = {Sylvain Carpentier}, title = {Compatible {Hamiltonian} operators for the {Krichever{\textendash}Novikov} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {744--747}, publisher = {Elsevier}, volume = {355}, number = {7}, year = {2017}, doi = {10.1016/j.crma.2017.05.009}, language = {en}, }
Sylvain Carpentier. Compatible Hamiltonian operators for the Krichever–Novikov equation. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 744-747. doi : 10.1016/j.crma.2017.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.05.009/
[1] A sufficient condition for a rational differential operator to generate an integrable system, Jpn. J. Math., Volume 12 (2017), pp. 33-89
[2] Singular degree of a rational matrix pseudodifferential operator, Int. Math. Res. Not., Volume 2015 (2015) no. 13, pp. 5162-5195
[3] On recursion operators for elliptic models, Nonlinearity, Volume 21 (2008) no. 6, pp. 1253-1264
[4] Non-local Hamiltonian structures and applications to the theory of integrable systems, Jpn. J. Math., Volume 8 (2013) no. 2, pp. 233-347
[5] Higher Hamiltonian structures (the sl2 case), JETP Lett., Volume 58 (1993) no. 8, pp. 658-664
[6] Evolution equations with nontrivial Lie–Bäcklund group, Funkc. Anal. Prilozh., Volume 14 (1980) no. 1, pp. 25-36
[7] Holomorphic bundles over algebraic curves and non-linear equations, Russ. Math. Surv., Volume 35 (1980) no. 6, pp. 53-79
[8] , Lecture Notes in Physics, vol. 120, Springer-Verlag, Berlin (1980), p. 233
[9] On the local systems Hamiltonian in the weakly non-local Poisson brackets, Physica D, Volume 156 (2001), pp. 53-80
[10] Symmetries of differential equations and the problem of integrability (A.V. Mikhailov, ed.), Integrability, Lecture Notes in Physics, vol. 767, Springer, 2008
[11] On the hamiltonian property of the Krichever–Novikov equation, Sov. Math. Dokl., Volume 30 (1984) no. 1
- Novikov-Veselov symmetries of the two-dimensional
sigma model, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 18 (2022), p. paper | DOI:10.3842/sigma.2022.006 | Zbl:1479.14040
Cité par 1 document. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier