Comptes Rendus
Lie algebras/Partial differential equations
Compatible Hamiltonian operators for the Krichever–Novikov equation
[Opérateurs hamiltoniens compatibles pour l'équation de Krichever–Novikov]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 744-747.

Il a été démontré par Sokolov que la hiérarchie de l'équation de Krichever–Novikov est hamiltonienne pour l'opérateur hamiltonien H0=ux1ux et possède deux opérateurs de récursion faiblement non locaux de degrés 4 et 6, L4 et L6. Nous montrons ici que H0, L4H0 et L6H0 sont des opérateurs hamiltoniens compatibles pour lesquels la hiérarchie de l'équation de Krichever–Novikov est hamiltonienne.

It has been proved by Sokolov that Krichever–Novikov equation's hierarchy is hamiltonian for the Hamiltonian operator H0=ux1ux and possesses two weakly non-local recursion operators of degrees 4 and 6, L4 and L6. We show here that H0, L4H0 and L6H0 are compatible Hamiltonians operators for which the Krichever–Novikov equation's hierarchy is hamiltonian.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.05.009

Sylvain Carpentier 1

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
@article{CRMATH_2017__355_7_744_0,
     author = {Sylvain Carpentier},
     title = {Compatible {Hamiltonian} operators for the {Krichever{\textendash}Novikov} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {744--747},
     publisher = {Elsevier},
     volume = {355},
     number = {7},
     year = {2017},
     doi = {10.1016/j.crma.2017.05.009},
     language = {en},
}
TY  - JOUR
AU  - Sylvain Carpentier
TI  - Compatible Hamiltonian operators for the Krichever–Novikov equation
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 744
EP  - 747
VL  - 355
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2017.05.009
LA  - en
ID  - CRMATH_2017__355_7_744_0
ER  - 
%0 Journal Article
%A Sylvain Carpentier
%T Compatible Hamiltonian operators for the Krichever–Novikov equation
%J Comptes Rendus. Mathématique
%D 2017
%P 744-747
%V 355
%N 7
%I Elsevier
%R 10.1016/j.crma.2017.05.009
%G en
%F CRMATH_2017__355_7_744_0
Sylvain Carpentier. Compatible Hamiltonian operators for the Krichever–Novikov equation. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 744-747. doi : 10.1016/j.crma.2017.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.05.009/

[1] S. Carpentier A sufficient condition for a rational differential operator to generate an integrable system, Jpn. J. Math., Volume 12 (2017), pp. 33-89

[2] S. Carpentier; A. De Sole; V. Kac Singular degree of a rational matrix pseudodifferential operator, Int. Math. Res. Not., Volume 2015 (2015) no. 13, pp. 5162-5195

[3] D.K. Demskoi; V.V. Sokolov On recursion operators for elliptic models, Nonlinearity, Volume 21 (2008) no. 6, pp. 1253-1264

[4] A. De Sole; V.G. Kac Non-local Hamiltonian structures and applications to the theory of integrable systems, Jpn. J. Math., Volume 8 (2013) no. 2, pp. 233-347

[5] B. Enriquez; A. Orlov; V. Rubtsov Higher Hamiltonian structures (the sl2 case), JETP Lett., Volume 58 (1993) no. 8, pp. 658-664

[6] N.Kh. Ibragimov; A.B. Shabat Evolution equations with nontrivial Lie–Bäcklund group, Funkc. Anal. Prilozh., Volume 14 (1980) no. 1, pp. 25-36

[7] J.M. Krichever; S.P. Novikov Holomorphic bundles over algebraic curves and non-linear equations, Russ. Math. Surv., Volume 35 (1980) no. 6, pp. 53-79

[8] F. Magri, Lecture Notes in Physics, vol. 120, Springer-Verlag, Berlin (1980), p. 233

[9] A.Ya. Maltsev; S.P. Novikov On the local systems Hamiltonian in the weakly non-local Poisson brackets, Physica D, Volume 156 (2001), pp. 53-80

[10] A.V. Mikhailov; V.V. Sokolov Symmetries of differential equations and the problem of integrability (A.V. Mikhailov, ed.), Integrability, Lecture Notes in Physics, vol. 767, Springer, 2008

[11] V.V. Sokolov On the hamiltonian property of the Krichever–Novikov equation, Sov. Math. Dokl., Volume 30 (1984) no. 1

Cité par Sources :

Commentaires - Politique