It has been proved by Sokolov that Krichever–Novikov equation's hierarchy is hamiltonian for the Hamiltonian operator and possesses two weakly non-local recursion operators of degrees 4 and 6, and . We show here that , and are compatible Hamiltonians operators for which the Krichever–Novikov equation's hierarchy is hamiltonian.
Il a été démontré par Sokolov que la hiérarchie de l'équation de Krichever–Novikov est hamiltonienne pour l'opérateur hamiltonien et possède deux opérateurs de récursion faiblement non locaux de degrés 4 et 6, et . Nous montrons ici que , et sont des opérateurs hamiltoniens compatibles pour lesquels la hiérarchie de l'équation de Krichever–Novikov est hamiltonienne.
Accepted:
Published online:
Sylvain Carpentier 1
@article{CRMATH_2017__355_7_744_0, author = {Sylvain Carpentier}, title = {Compatible {Hamiltonian} operators for the {Krichever{\textendash}Novikov} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {744--747}, publisher = {Elsevier}, volume = {355}, number = {7}, year = {2017}, doi = {10.1016/j.crma.2017.05.009}, language = {en}, }
Sylvain Carpentier. Compatible Hamiltonian operators for the Krichever–Novikov equation. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 744-747. doi : 10.1016/j.crma.2017.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.05.009/
[1] A sufficient condition for a rational differential operator to generate an integrable system, Jpn. J. Math., Volume 12 (2017), pp. 33-89
[2] Singular degree of a rational matrix pseudodifferential operator, Int. Math. Res. Not., Volume 2015 (2015) no. 13, pp. 5162-5195
[3] On recursion operators for elliptic models, Nonlinearity, Volume 21 (2008) no. 6, pp. 1253-1264
[4] Non-local Hamiltonian structures and applications to the theory of integrable systems, Jpn. J. Math., Volume 8 (2013) no. 2, pp. 233-347
[5] Higher Hamiltonian structures (the sl2 case), JETP Lett., Volume 58 (1993) no. 8, pp. 658-664
[6] Evolution equations with nontrivial Lie–Bäcklund group, Funkc. Anal. Prilozh., Volume 14 (1980) no. 1, pp. 25-36
[7] Holomorphic bundles over algebraic curves and non-linear equations, Russ. Math. Surv., Volume 35 (1980) no. 6, pp. 53-79
[8] , Lecture Notes in Physics, vol. 120, Springer-Verlag, Berlin (1980), p. 233
[9] On the local systems Hamiltonian in the weakly non-local Poisson brackets, Physica D, Volume 156 (2001), pp. 53-80
[10] Symmetries of differential equations and the problem of integrability (A.V. Mikhailov, ed.), Integrability, Lecture Notes in Physics, vol. 767, Springer, 2008
[11] On the hamiltonian property of the Krichever–Novikov equation, Sov. Math. Dokl., Volume 30 (1984) no. 1
Cited by Sources:
Comments - Policy