Comptes Rendus
Lie algebras/Partial differential equations
Compatible Hamiltonian operators for the Krichever–Novikov equation
Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 744-747.

It has been proved by Sokolov that Krichever–Novikov equation's hierarchy is hamiltonian for the Hamiltonian operator H0=ux1ux and possesses two weakly non-local recursion operators of degrees 4 and 6, L4 and L6. We show here that H0, L4H0 and L6H0 are compatible Hamiltonians operators for which the Krichever–Novikov equation's hierarchy is hamiltonian.

Il a été démontré par Sokolov que la hiérarchie de l'équation de Krichever–Novikov est hamiltonienne pour l'opérateur hamiltonien H0=ux1ux et possède deux opérateurs de récursion faiblement non locaux de degrés 4 et 6, L4 et L6. Nous montrons ici que H0, L4H0 et L6H0 sont des opérateurs hamiltoniens compatibles pour lesquels la hiérarchie de l'équation de Krichever–Novikov est hamiltonienne.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2017.05.009

Sylvain Carpentier 1

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
@article{CRMATH_2017__355_7_744_0,
     author = {Sylvain Carpentier},
     title = {Compatible {Hamiltonian} operators for the {Krichever{\textendash}Novikov} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {744--747},
     publisher = {Elsevier},
     volume = {355},
     number = {7},
     year = {2017},
     doi = {10.1016/j.crma.2017.05.009},
     language = {en},
}
TY  - JOUR
AU  - Sylvain Carpentier
TI  - Compatible Hamiltonian operators for the Krichever–Novikov equation
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 744
EP  - 747
VL  - 355
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2017.05.009
LA  - en
ID  - CRMATH_2017__355_7_744_0
ER  - 
%0 Journal Article
%A Sylvain Carpentier
%T Compatible Hamiltonian operators for the Krichever–Novikov equation
%J Comptes Rendus. Mathématique
%D 2017
%P 744-747
%V 355
%N 7
%I Elsevier
%R 10.1016/j.crma.2017.05.009
%G en
%F CRMATH_2017__355_7_744_0
Sylvain Carpentier. Compatible Hamiltonian operators for the Krichever–Novikov equation. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 744-747. doi : 10.1016/j.crma.2017.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.05.009/

[1] S. Carpentier A sufficient condition for a rational differential operator to generate an integrable system, Jpn. J. Math., Volume 12 (2017), pp. 33-89

[2] S. Carpentier; A. De Sole; V. Kac Singular degree of a rational matrix pseudodifferential operator, Int. Math. Res. Not., Volume 2015 (2015) no. 13, pp. 5162-5195

[3] D.K. Demskoi; V.V. Sokolov On recursion operators for elliptic models, Nonlinearity, Volume 21 (2008) no. 6, pp. 1253-1264

[4] A. De Sole; V.G. Kac Non-local Hamiltonian structures and applications to the theory of integrable systems, Jpn. J. Math., Volume 8 (2013) no. 2, pp. 233-347

[5] B. Enriquez; A. Orlov; V. Rubtsov Higher Hamiltonian structures (the sl2 case), JETP Lett., Volume 58 (1993) no. 8, pp. 658-664

[6] N.Kh. Ibragimov; A.B. Shabat Evolution equations with nontrivial Lie–Bäcklund group, Funkc. Anal. Prilozh., Volume 14 (1980) no. 1, pp. 25-36

[7] J.M. Krichever; S.P. Novikov Holomorphic bundles over algebraic curves and non-linear equations, Russ. Math. Surv., Volume 35 (1980) no. 6, pp. 53-79

[8] F. Magri, Lecture Notes in Physics, vol. 120, Springer-Verlag, Berlin (1980), p. 233

[9] A.Ya. Maltsev; S.P. Novikov On the local systems Hamiltonian in the weakly non-local Poisson brackets, Physica D, Volume 156 (2001), pp. 53-80

[10] A.V. Mikhailov; V.V. Sokolov Symmetries of differential equations and the problem of integrability (A.V. Mikhailov, ed.), Integrability, Lecture Notes in Physics, vol. 767, Springer, 2008

[11] V.V. Sokolov On the hamiltonian property of the Krichever–Novikov equation, Sov. Math. Dokl., Volume 30 (1984) no. 1

Cited by Sources:

Comments - Policy