[Une inégalité de Poincaré anisotrope pondérée pour les domaines convexes]
Nous prouvons une limite inférieure optimale pour la meilleure constante dans une classe d'inégalités de Poincaré anisotropes pondérées.
We prove an optimal lower bound for the best constant in a class of weighted anisotropic Poincaré inequalities.
Accepté le :
Publié le :
Francesco Della Pietra 1 ; Nunzia Gavitone 1 ; Gianpaolo Piscitelli 1
@article{CRMATH_2017__355_7_748_0, author = {Francesco Della Pietra and Nunzia Gavitone and Gianpaolo Piscitelli}, title = {A sharp weighted anisotropic {Poincar\'e} inequality for convex domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {748--752}, publisher = {Elsevier}, volume = {355}, number = {7}, year = {2017}, doi = {10.1016/j.crma.2017.06.005}, language = {en}, }
TY - JOUR AU - Francesco Della Pietra AU - Nunzia Gavitone AU - Gianpaolo Piscitelli TI - A sharp weighted anisotropic Poincaré inequality for convex domains JO - Comptes Rendus. Mathématique PY - 2017 SP - 748 EP - 752 VL - 355 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2017.06.005 LA - en ID - CRMATH_2017__355_7_748_0 ER -
Francesco Della Pietra; Nunzia Gavitone; Gianpaolo Piscitelli. A sharp weighted anisotropic Poincaré inequality for convex domains. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 748-752. doi : 10.1016/j.crma.2017.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.06.005/
[1] An optimal Poincaré inequality in
[2] Convex symmetrization and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 14 (1997), pp. 275-293
[3] A note on the Poincaré inequality for convex domains, Z. Anal. Anwend., Volume 22 (2003), pp. 751-756
[4] B. Brandolini, F. Chiacchio, E.B. Dryden, J.J. Langford, Sharp Poincaré inequalities in a class of non-convex sets, preprint.
[5] Riemann–Finsler Geometry, Nankai Tracts in Mathematics, vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, USA, 2005
[6] Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators, Math. Nachr., Volume 287 (2014), pp. 194-209
[7] Faber–Krahn inequality for anisotropic eigenvalue problems with Robin boundary conditions, Potential Anal., Volume 41 (2014), pp. 1147-1166
[8] Symmetrization with respect to the anisotropic perimeter and applications, Math. Ann., Volume 363 (2015), pp. 953-971
[9] The Neumann eigenvalue problem for the ∞-Laplacian, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 26 (2015), pp. 119-134
[10] Best constants in Poincaré inequalities for convex domains, J. Convex Anal., Volume 20 (2013), pp. 253-264
[11] Anisotropic elliptic problems involving sublinear terms, SACI 2015 – 10th Jubilee IEEE International Symposium on Applied Computational Intelligence and Informatics, Proceedings, 2015, pp. 141-146 (7208187)
[12] A remark on optimal weighted Poincaré inequalities for convex domains, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 23 (2012), pp. 467-475
[13] An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal., Volume 5 (1960), pp. 286-292
[14] On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions, Houst. J. Math., Volume 42 (2016), pp. 613-635
[15] Sharp estimate on the first eigenvalue of the p-Laplacian, Nonlinear Anal., Volume 75 (2012), pp. 4974-4994
[16] Anisotropic symmetrization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006), pp. 539-565
[17] An optimal anisotropic Poincaré inequality for convex domains, Pac. J. Math., Volume 258 (2012), pp. 305-326
- Sharp estimates for the first Robin eigenvalue of nonlinear elliptic operators, Journal of Differential Equations, Volume 386 (2024), p. 269 | DOI:10.1016/j.jde.2023.12.039
- Monotonicity Principle for Tomography in Nonlinear Conducting Materials, Journal of Physics: Conference Series, Volume 2444 (2023) no. 1, p. 012004 | DOI:10.1088/1742-6596/2444/1/012004
- Two inequalities for the first Robin eigenvalue of the Finsler Laplacian, Archiv der Mathematik, Volume 118 (2022) no. 2, p. 205 | DOI:10.1007/s00013-021-01687-w
- Pseudo-orthogonality for graph 1-Laplacian eigenvectors and applications to higher Cheeger constants and data clustering, Frontiers of Mathematics in China, Volume 17 (2022) no. 4, p. 591 | DOI:10.1007/s11464-021-0961-2
- Monotonicity Principle in tomography of nonlinear conducting materials *, Inverse Problems, Volume 37 (2021) no. 4, p. 045012 | DOI:10.1088/1361-6420/abd29a
- The monotonicity principle for magnetic induction tomography, Inverse Problems, Volume 37 (2021) no. 9, p. 095003 | DOI:10.1088/1361-6420/ac156c
- Sharp estimates for the first p-Laplacian eigenvalue and for the p-torsional rigidity on convex sets with holes, ESAIM: Control, Optimisation and Calculus of Variations, Volume 26 (2020), p. 111 | DOI:10.1051/cocv/2020033
- An Optimal Bound for Nonlinear Eigenvalues and Torsional Rigidity on Domains with Holes, Milan Journal of Mathematics, Volume 88 (2020) no. 2, p. 373 | DOI:10.1007/s00032-020-00320-9
- On the second Dirichlet eigenvalue of some nonlinear anisotropic elliptic operators, Bulletin des Sciences Mathématiques, Volume 155 (2019), p. 10 | DOI:10.1016/j.bulsci.2019.02.005
- Anisotropic isoperimetric inequalities involving boundary momentum, perimeter and volume, Nonlinear Analysis, Volume 187 (2019), p. 229 | DOI:10.1016/j.na.2019.04.017
- On functionals involving the torsional rigidity related to some classes of nonlinear operators, Journal of Differential Equations, Volume 265 (2018) no. 12, p. 6424 | DOI:10.1016/j.jde.2018.07.030
Cité par 11 documents. Sources : Crossref
Commentaires - Politique