Comptes Rendus
Mathematical analysis/Partial differential equations
A sharp weighted anisotropic Poincaré inequality for convex domains
[Une inégalité de Poincaré anisotrope pondérée pour les domaines convexes]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 748-752.

Nous prouvons une limite inférieure optimale pour la meilleure constante dans une classe d'inégalités de Poincaré anisotropes pondérées.

We prove an optimal lower bound for the best constant in a class of weighted anisotropic Poincaré inequalities.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.06.005

Francesco Della Pietra 1 ; Nunzia Gavitone 1 ; Gianpaolo Piscitelli 1

1 Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli Federico II, Complesso Monte S. Angelo, via Cintia, 80126 Napoli, Italy
@article{CRMATH_2017__355_7_748_0,
     author = {Francesco Della Pietra and Nunzia Gavitone and Gianpaolo Piscitelli},
     title = {A sharp weighted anisotropic {Poincar\'e} inequality for convex domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {748--752},
     publisher = {Elsevier},
     volume = {355},
     number = {7},
     year = {2017},
     doi = {10.1016/j.crma.2017.06.005},
     language = {en},
}
TY  - JOUR
AU  - Francesco Della Pietra
AU  - Nunzia Gavitone
AU  - Gianpaolo Piscitelli
TI  - A sharp weighted anisotropic Poincaré inequality for convex domains
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 748
EP  - 752
VL  - 355
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2017.06.005
LA  - en
ID  - CRMATH_2017__355_7_748_0
ER  - 
%0 Journal Article
%A Francesco Della Pietra
%A Nunzia Gavitone
%A Gianpaolo Piscitelli
%T A sharp weighted anisotropic Poincaré inequality for convex domains
%J Comptes Rendus. Mathématique
%D 2017
%P 748-752
%V 355
%N 7
%I Elsevier
%R 10.1016/j.crma.2017.06.005
%G en
%F CRMATH_2017__355_7_748_0
Francesco Della Pietra; Nunzia Gavitone; Gianpaolo Piscitelli. A sharp weighted anisotropic Poincaré inequality for convex domains. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 748-752. doi : 10.1016/j.crma.2017.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.06.005/

[1] G. Acosta; R.G. Durán An optimal Poincaré inequality in L1 for convex domains, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 195-202

[2] A. Alvino; V. Ferone; P.-L. Lions; G. Trombetti Convex symmetrization and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 14 (1997), pp. 275-293

[3] M. Bebendorf A note on the Poincaré inequality for convex domains, Z. Anal. Anwend., Volume 22 (2003), pp. 751-756

[4] B. Brandolini, F. Chiacchio, E.B. Dryden, J.J. Langford, Sharp Poincaré inequalities in a class of non-convex sets, preprint.

[5] S.S. Chern; Z. Shen Riemann–Finsler Geometry, Nankai Tracts in Mathematics, vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, USA, 2005

[6] F. Della Pietra; N. Gavitone Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators, Math. Nachr., Volume 287 (2014), pp. 194-209

[7] F. Della Pietra; N. Gavitone Faber–Krahn inequality for anisotropic eigenvalue problems with Robin boundary conditions, Potential Anal., Volume 41 (2014), pp. 1147-1166

[8] F. Della Pietra; N. Gavitone Symmetrization with respect to the anisotropic perimeter and applications, Math. Ann., Volume 363 (2015), pp. 953-971

[9] L. Esposito; B. Kawohl; C. Nitsch; C. Trombetti The Neumann eigenvalue problem for the ∞-Laplacian, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 26 (2015), pp. 119-134

[10] L. Esposito; C. Nitsch; C. Trombetti Best constants in Poincaré inequalities for convex domains, J. Convex Anal., Volume 20 (2013), pp. 253-264

[11] C. Farkas; J. Fodor; A. Kristaly Anisotropic elliptic problems involving sublinear terms, SACI 2015 – 10th Jubilee IEEE International Symposium on Applied Computational Intelligence and Informatics, Proceedings, 2015, pp. 141-146 (7208187)

[12] V. Ferone; C. Nitsch; C. Trombetti A remark on optimal weighted Poincaré inequalities for convex domains, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 23 (2012), pp. 467-475

[13] L.E. Payne; H.F. Weinberger An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal., Volume 5 (1960), pp. 286-292

[14] J.D. Rossi; N. Saintier On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions, Houst. J. Math., Volume 42 (2016), pp. 613-635

[15] D. Valtorta Sharp estimate on the first eigenvalue of the p-Laplacian, Nonlinear Anal., Volume 75 (2012), pp. 4974-4994

[16] J. Van Schaftingen Anisotropic symmetrization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006), pp. 539-565

[17] G. Wang; C. Xia An optimal anisotropic Poincaré inequality for convex domains, Pac. J. Math., Volume 258 (2012), pp. 305-326

Cité par Sources :

Commentaires - Politique