[Une inégalité de Poincaré anisotrope pondérée pour les domaines convexes]
Nous prouvons une limite inférieure optimale pour la meilleure constante dans une classe d'inégalités de Poincaré anisotropes pondérées.
We prove an optimal lower bound for the best constant in a class of weighted anisotropic Poincaré inequalities.
Accepté le :
Publié le :
Francesco Della Pietra 1 ; Nunzia Gavitone 1 ; Gianpaolo Piscitelli 1
@article{CRMATH_2017__355_7_748_0, author = {Francesco Della Pietra and Nunzia Gavitone and Gianpaolo Piscitelli}, title = {A sharp weighted anisotropic {Poincar\'e} inequality for convex domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {748--752}, publisher = {Elsevier}, volume = {355}, number = {7}, year = {2017}, doi = {10.1016/j.crma.2017.06.005}, language = {en}, }
TY - JOUR AU - Francesco Della Pietra AU - Nunzia Gavitone AU - Gianpaolo Piscitelli TI - A sharp weighted anisotropic Poincaré inequality for convex domains JO - Comptes Rendus. Mathématique PY - 2017 SP - 748 EP - 752 VL - 355 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2017.06.005 LA - en ID - CRMATH_2017__355_7_748_0 ER -
Francesco Della Pietra; Nunzia Gavitone; Gianpaolo Piscitelli. A sharp weighted anisotropic Poincaré inequality for convex domains. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 748-752. doi : 10.1016/j.crma.2017.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.06.005/
[1] An optimal Poincaré inequality in for convex domains, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 195-202
[2] Convex symmetrization and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 14 (1997), pp. 275-293
[3] A note on the Poincaré inequality for convex domains, Z. Anal. Anwend., Volume 22 (2003), pp. 751-756
[4] B. Brandolini, F. Chiacchio, E.B. Dryden, J.J. Langford, Sharp Poincaré inequalities in a class of non-convex sets, preprint.
[5] Riemann–Finsler Geometry, Nankai Tracts in Mathematics, vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, USA, 2005
[6] Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators, Math. Nachr., Volume 287 (2014), pp. 194-209
[7] Faber–Krahn inequality for anisotropic eigenvalue problems with Robin boundary conditions, Potential Anal., Volume 41 (2014), pp. 1147-1166
[8] Symmetrization with respect to the anisotropic perimeter and applications, Math. Ann., Volume 363 (2015), pp. 953-971
[9] The Neumann eigenvalue problem for the ∞-Laplacian, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 26 (2015), pp. 119-134
[10] Best constants in Poincaré inequalities for convex domains, J. Convex Anal., Volume 20 (2013), pp. 253-264
[11] Anisotropic elliptic problems involving sublinear terms, SACI 2015 – 10th Jubilee IEEE International Symposium on Applied Computational Intelligence and Informatics, Proceedings, 2015, pp. 141-146 (7208187)
[12] A remark on optimal weighted Poincaré inequalities for convex domains, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 23 (2012), pp. 467-475
[13] An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal., Volume 5 (1960), pp. 286-292
[14] On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions, Houst. J. Math., Volume 42 (2016), pp. 613-635
[15] Sharp estimate on the first eigenvalue of the p-Laplacian, Nonlinear Anal., Volume 75 (2012), pp. 4974-4994
[16] Anisotropic symmetrization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006), pp. 539-565
[17] An optimal anisotropic Poincaré inequality for convex domains, Pac. J. Math., Volume 258 (2012), pp. 305-326
Cité par Sources :
Commentaires - Politique