Comptes Rendus
Mathematical analysis
Circumventing the lack of dissipation in certain Oldroyd models
Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 753-759.

We modify an argument of Renardy proving existence and regularity for a subset of a class of models of non-Newtonian fluids suggested by Oldroyd, including the upper-convected and lower-convected Maxwellian models. We suggest an effective method for solving these models, which can provide a variational formulation suitable for finite element computation.

Nous modifions le raisonnement utilisé par Renardy pour prouver l'existence et la régularité de solutions d'une sous-classe de modèles de fluides non newtoniens introduits par Oldroyd, comme les modèles maxwelliens de sur-convection et sous-convection. Nous proposons une méthode itérative variationnelle de calcul de solutions qui s'adapte aux éléments finis.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2017.05.013

Vivette Girault 1; L. Ridgway Scott 2

1 Sorbonne Universités, UPMC Université Paris-6, CNRS, UMR 7598, Laboratoire Jacques-Louis-Lions, 4, place Jussieu, 75005 Paris, France
2 Departments of Computer Science and Mathematics, Computation Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
@article{CRMATH_2017__355_7_753_0,
     author = {Vivette Girault and L. Ridgway Scott},
     title = {Circumventing the lack of dissipation in certain {Oldroyd} models},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {753--759},
     publisher = {Elsevier},
     volume = {355},
     number = {7},
     year = {2017},
     doi = {10.1016/j.crma.2017.05.013},
     language = {en},
}
TY  - JOUR
AU  - Vivette Girault
AU  - L. Ridgway Scott
TI  - Circumventing the lack of dissipation in certain Oldroyd models
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 753
EP  - 759
VL  - 355
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2017.05.013
LA  - en
ID  - CRMATH_2017__355_7_753_0
ER  - 
%0 Journal Article
%A Vivette Girault
%A L. Ridgway Scott
%T Circumventing the lack of dissipation in certain Oldroyd models
%J Comptes Rendus. Mathématique
%D 2017
%P 753-759
%V 355
%N 7
%I Elsevier
%R 10.1016/j.crma.2017.05.013
%G en
%F CRMATH_2017__355_7_753_0
Vivette Girault; L. Ridgway Scott. Circumventing the lack of dissipation in certain Oldroyd models. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 753-759. doi : 10.1016/j.crma.2017.05.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.05.013/

[1] R.A. Adams; J.J. Fournier Sobolev Spaces, vol. 140, Academic Press, 2003

[2] H. Beirão da Veiga Existence results in Sobolev spaces for a stationary transport equation, Ricerche Mat., Volume XXXVI (1987) no. Suppl., pp. 173-184

[3] H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011

[4] E. Fernández-Cara; F. Guillén; R.R. Ortega Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind, Handb. Numer. Anal., Volume 8 (2002), pp. 543-660

[5] A. Friedman Partial Differential Equations, Holt, Rinehart and Winston Inc., New York, 1969

[6] V. Girault; L.R. Scott Analysis of a two-dimensional grade-two fluid model with a tangential boundary condition, J. Math. Pures Appl., Volume 78 (1999), pp. 981-1011

[7] V. Girault; L.R. Scott Wellposedness of some Oldroyd models that lack explicit dissipation, 2017 (Research Report UC/CS TR-2017-04, Dept. Comp. Sci., University of Chicago, IL, USA)

[8] V. Girault; L. Tartar Régularité dans Lp et W1,p de la solution d'une équation de transport stationnaire, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 15–16, pp. 885-890

[9] J.G. Oldroyd Non-Newtonian effects in steady motion of some idealized elastico-viscous fluids, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 245 (Jun 1958), pp. 278-297

[10] M. Renardy Existence of slow steady flows of viscoelastic fluids with differential constitutive equations, Z. Angew. Math. Mech., Volume 65 (1985), pp. 449-451

[11] M. Renardy Existence of slow steady flows of viscoelastic fluids of integral type, Z. Angew. Math. Mech., Volume 68 (1988), p. T40-T44

[12] J.H. Videman Mathematical Analysis of Viscoelastic Non-Newtonian Fluids, University of Lisbon, Portugal, 1997 (PhD thesis)

Cited by Sources:

Comments - Policy