We modify an argument of Renardy proving existence and regularity for a subset of a class of models of non-Newtonian fluids suggested by Oldroyd, including the upper-convected and lower-convected Maxwellian models. We suggest an effective method for solving these models, which can provide a variational formulation suitable for finite element computation.
Nous modifions le raisonnement utilisé par Renardy pour prouver l'existence et la régularité de solutions d'une sous-classe de modèles de fluides non newtoniens introduits par Oldroyd, comme les modèles maxwelliens de sur-convection et sous-convection. Nous proposons une méthode itérative variationnelle de calcul de solutions qui s'adapte aux éléments finis.
Accepted:
Published online:
Vivette Girault 1; L. Ridgway Scott 2
@article{CRMATH_2017__355_7_753_0, author = {Vivette Girault and L. Ridgway Scott}, title = {Circumventing the lack of dissipation in certain {Oldroyd} models}, journal = {Comptes Rendus. Math\'ematique}, pages = {753--759}, publisher = {Elsevier}, volume = {355}, number = {7}, year = {2017}, doi = {10.1016/j.crma.2017.05.013}, language = {en}, }
Vivette Girault; L. Ridgway Scott. Circumventing the lack of dissipation in certain Oldroyd models. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 753-759. doi : 10.1016/j.crma.2017.05.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.05.013/
[1] Sobolev Spaces, vol. 140, Academic Press, 2003
[2] Existence results in Sobolev spaces for a stationary transport equation, Ricerche Mat., Volume XXXVI (1987) no. Suppl., pp. 173-184
[3] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011
[4] Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind, Handb. Numer. Anal., Volume 8 (2002), pp. 543-660
[5] Partial Differential Equations, Holt, Rinehart and Winston Inc., New York, 1969
[6] Analysis of a two-dimensional grade-two fluid model with a tangential boundary condition, J. Math. Pures Appl., Volume 78 (1999), pp. 981-1011
[7] Wellposedness of some Oldroyd models that lack explicit dissipation, 2017 (Research Report UC/CS TR-2017-04, Dept. Comp. Sci., University of Chicago, IL, USA)
[8] Régularité dans et de la solution d'une équation de transport stationnaire, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 15–16, pp. 885-890
[9] Non-Newtonian effects in steady motion of some idealized elastico-viscous fluids, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 245 (Jun 1958), pp. 278-297
[10] Existence of slow steady flows of viscoelastic fluids with differential constitutive equations, Z. Angew. Math. Mech., Volume 65 (1985), pp. 449-451
[11] Existence of slow steady flows of viscoelastic fluids of integral type, Z. Angew. Math. Mech., Volume 68 (1988), p. T40-T44
[12] Mathematical Analysis of Viscoelastic Non-Newtonian Fluids, University of Lisbon, Portugal, 1997 (PhD thesis)
Cited by Sources:
Comments - Policy