[Remarques sur les métriques canoniques des domaines de Cartan–Hartogs]
The Cartan–Hartogs domains are defined as a class of Hartogs-type domains over irreducible bounded symmetric domains. For a Cartan–Hartogs domain
Les domaines de Cartan–Hartogs sont définis comme une classe de domaines de type Hartogs sur les domaines symétriques bornés irréductibles. Pour un domaine de Cartan–Hartogs
Accepté le :
Publié le :
Enchao Bi 1 ; Zhenhan Tu 2
@article{CRMATH_2017__355_7_760_0, author = {Enchao Bi and Zhenhan Tu}, title = {Remarks on the canonical metrics on the {Cartan{\textendash}Hartogs} domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {760--768}, publisher = {Elsevier}, volume = {355}, number = {7}, year = {2017}, doi = {10.1016/j.crma.2017.06.009}, language = {en}, }
Enchao Bi; Zhenhan Tu. Remarks on the canonical metrics on the Cartan–Hartogs domains. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 760-768. doi : 10.1016/j.crma.2017.06.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.06.009/
[1] On the curvature tensor of the Hermitian symmetric manifolds, Ann. of Math. (2), Volume 71 (1960) no. 3, pp. 508-521
[2] Quantization of Kähler manifolds. I: geometric interpretation of Berezin's quantization, J. Geom. Phys., Volume 7 (1990), pp. 45-62
[3] On compact, locally symmetric Kähler manifolds, Ann. of Math., Volume 71 (1960) no. 3, pp. 472-507
[4] The Bergman kernel and a theorem of Tian, Katata, 1997 (Trends in Mathematics), Birkhäuser Boston, Boston, MA (1999), pp. 1-23
[5] Scalar curvature and projective embeddings, I, J. Differ. Geom., Volume 59 (2001), pp. 479-522
[6] A Forelli–Rudin construction and asymptotics of weighted Bergman kernels, J. Funct. Anal., Volume 177 (2000) no. 2, pp. 257-281
[7] The asymptotics of a Laplace integral on a Kähler manifold, J. Reine Angew. Math., Volume 528 (2000), pp. 1-39
[8] On canonical metrics on Cartan–Hartogs domains, Math. Z., Volume 278 (2014) no. 1, pp. 301-320
[9] Differential Geometry, Lie groups, and Symmetric Spaces, Academic Press, 1979
[10] Analytic invariants of bounded symmetric domains, Proc. Amer. Math. Soc., Volume 19 (1968) no. 2, pp. 279-284
[11] Balanced metrics on Cartan and Cartan–Hartogs domains, Math. Z., Volume 270 (2012), pp. 1077-1087
[12] On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch, Amer. J. Math., Volume 122 (2000) no. 2, pp. 235-273
[13] Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, vol. 254, Birkhäuser Boston Inc., Boston, MA, USA, 2007
[14] Generalized Bergman kernels on symplectic manifolds, Adv. Math., Volume 217 (2008) no. 4, pp. 1756-1815
[15] Berezin–Toeplitz quantization on Kähler manifolds, J. Reine Angew. Math., Volume 662 (2012), pp. 1-56
[16] Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds, World Scientific, 1989
[17] Coherent states and Kähler manifolds, Q. J. Math., Volume 28 (1977) no. 2, pp. 403-415
[18] Strong rigidity of compact quotients of exceptional bounded symmetric domains, Duke Math. J., Volume 48 (1981) no. 4, pp. 857-871
[19] Lie Groups, Lie Algebras, and Their Representation, Springer, 1984
[20] A closed formula for the asymptotic expansion of the Bergman kernel, Commun. Math. Phys., Volume 314 (2012), pp. 555-585
[21] The equivalence on classical metrics, Sci. China Ser. A, Math., Volume 50 (2007) no. 2, pp. 183-200
[22] Canonical metrics on Cartan–Hartogs domains, Int. J. Geom. Methods Mod. Phys., Volume 09 (2012) no. 1
[23] Szegö kernels and a theorem of Tian, Int. Math. Res. Not., Volume 6 (1998), pp. 317-331
Cité par Sources :
Commentaires - Politique