[Le théorème du flot tubulaire pour les champs vectoriels Lipschitz à divergence nulle]
Dans cette note, nous prouvons le théorème du flot tubulaire pour les champs vectoriels Lipschitz à divergence nulle.
In this note, we prove the flowbox theorem for divergence-free Lipschitz vector fields.
Accepté le :
Publié le :
Mário Bessa 1
@article{CRMATH_2017__355_8_881_0, author = {M\'ario Bessa}, title = {The flowbox theorem for divergence-free {Lipschitz} vector fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {881--886}, publisher = {Elsevier}, volume = {355}, number = {8}, year = {2017}, doi = {10.1016/j.crma.2017.07.006}, language = {en}, }
Mário Bessa. The flowbox theorem for divergence-free Lipschitz vector fields. Comptes Rendus. Mathématique, Volume 355 (2017) no. 8, pp. 881-886. doi : 10.1016/j.crma.2017.07.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.07.006/
[1] Foundations of Mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, MA, USA, 1978
[2] A pasting lemma and some applications for conservative systems, Ergod. Theory Dyn. Syst., Volume 27 (2007), pp. 1399-1417 (With an appendix by David Diica and Yakov Simpson-Weller)
[3] Representation of divergence-free vector fields, Q. Appl. Math., Volume 69 (2011) no. 2, pp. 309-316
[4] The Lyapunov exponents of generic zero divergence three-dimensional vector fields, Ergod. Theory Dyn. Syst., Volume 27 (2007) no. 5, pp. 1445-1472
[5] Removing zero Lyapunov exponents in volume-preserving flows, Nonlinearity, Volume 20 (2007) no. 4, pp. 1007-1016
[6] Generic dynamics of 4-dimensional Hamiltonian systems, Commun. Math. Phys., Volume 281 (2008) no. 3, pp. 597-619
[7] M. Bessa, M.J. Torres, P. Varandas, On the periodic orbits, shadowing and strong transitivity of continuous flows, Preprint, 2016.
[8] Lipschitz flow-box theorem, J. Math. Anal. Appl., Volume 338 (2008), pp. 1108-1115
[9] On the Hamiltonian flow box theorem, Qual. Theory Dyn. Syst., Volume 12 (2013) no. 1, pp. 5-9
[10] F. Castro, F. Oliveira, On the Transitivity of Invariant Manifolds of Conservative Flows, Preprint ArXiv, 2015.
[11] On a partial differential equation involving the Jacobian determinant, Ann. Inst. Henri Poincaré, Volume 7 (1990) no. 1, pp. 1-26
[12] Geometric Measure Theory, Springer-Verlag, 1969
[13] Smooth dynamical systems, Nonlinear Dyn., Volume 17 (2001) (World Scientific)
[14] Ergodic Theory and Differentiable Dynamics, Springer Verlag, 1987
[15] On the volume elements on a manifold, Trans. Amer. Math. Soc., Volume 120 (1965), pp. 286-294
[16] Geometric Theory of Dynamical Systems – an Introduction, Springer-Verlag, New York, Berlin, 1982
[17] Lectures on Hamiltonian Systems, Monograf. Mat. Rio de Janeiro IMPA, 1971
Cité par Sources :
Commentaires - Politique