In a recent paper, Hamidi and Jahangiri [C. R. Acad. Sci. Paris, Ser. I 352 (2014) 17–20] introduced and investigated the class of bi-close-to-convex functions, and determined the estimates for the general Taylor–Maclaurin coefficients of the functions therein. This note mainly aims to point out and correct the errors of the main result in the above-mentioned paper.
Hamidi et Jahangiri [C. R. Acad. Sci. Paris, Ser. I 352 (2014) 17–20] ont introduit et étudié la classe des fonctions bi-presque convexes. Ils majorent les coefficients de Taylor–MacLaurin de ces fonctions bi-presque convexes. Toutefois, la note citée ci-dessus contient des erreurs, que nous mettons en évidence et corrigeons ici.
Accepted:
Published online:
Zhi-Gang Wang 1; Serap Bulut 2
@article{CRMATH_2017__355_8_876_0, author = {Zhi-Gang Wang and Serap Bulut}, title = {A note on the coefficient estimates of bi-close-to-convex functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {876--880}, publisher = {Elsevier}, volume = {355}, number = {8}, year = {2017}, doi = {10.1016/j.crma.2017.07.014}, language = {en}, }
Zhi-Gang Wang; Serap Bulut. A note on the coefficient estimates of bi-close-to-convex functions. Comptes Rendus. Mathématique, Volume 355 (2017) no. 8, pp. 876-880. doi : 10.1016/j.crma.2017.07.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.07.014/
[1] Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006), pp. 179-222
[2] An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002), pp. 343-367
[3] Univalent Functions, Grundlehren Math. Wiss., vol. 259, Springer, New York, 1983
[4] Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 17-20
[5] On the theory of univalent functions, Ann. of Math. (1), Volume 37 (1936), pp. 374-408
[6] Coefficient bounds for a new subclass of analytic bi-close-to-convex functions by making use of Faber polynomial expansion, Turk. J. Math., Volume 41 (2017), pp. 888-895
[7] On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991), pp. 268-276
Cited by Sources:
Comments - Policy